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ABSTRACT

The results and evaluations of an investigation of the feasibility of a
cryogenic (02-H2) reaction control system are presented, This volume
presents the analytical, conceptual design, and system analysis results

from the program. Possible applications of such a reaction control system
include propellant settling engines, attitude control, and secondary propul-
sion for upper stages, spacecraft, and orbital tankers, Two types of sys-
tems representative of a system integrated with the tankage for a pump-fed
main propulsior system (chamber pressure of 10 psia) and a system fed from
separate tankage (chamber pressure of 100 psia) were investigated., Theoret-
ical combustion performance and temperature characteristics were evaluated.
The thrustors for such a system and a temperature and pressure conditioning
subsystem were examined from a component standpoint., Conceptual designs
were prepared and evaluated, and past work was reviewed from a design anal-
ysis standpoint., Candidate system design concepts were evaluated from the
standpoints of weight, volume, reliability, technical state-~of-the-art, etc.,
and one concept selected for further investigation. The selected system

was modeled and the resulting equations programmed for a digital computer,
This program was used to simulate system and thrustor operation and thus,

to evaluate operating characteristics and the type of control required,
Experimental evaluation of the system is reported in Volume II of this

report,



R RROCKETDYNE . A DIVISION OF NORTH AMERICAN AVIATION,

CONTENTS

Foreword « .+ o« o o o o o o
Acknowledgements . . .« . o .
Abstract « .« .« « o o o o .
Summary « o o o o o o o @
Introduction. « . + ¢+ o . .

Applications Review o o« o o« o

*

Utilization of Cryogenic Reaction Control Systems

Aprlications Summary . « .« o

System Theoretical Performance Analysis,

Overall System Performance . .

Helium Dilution. « . .« o o

Combustion Temperature Characteristics .

Summary of Theoretical Performance Characteristics

Component Analysis « Thrustor . .
Thrustor Conceptual Designs. .
Thrustor Design Criteria. ., .

Thrustor Performance and Operation

Concept Selection « o+ .« .+ &

*

.

Summary of Thrustor Design and Analysis Considerations,

Component Analysis = Conditicner .
Introductions « « o o« .+ .
Conceptual Designs. « « +
System Performance. . « + o
Component Design . . . .+ .

System Control Considerations .

Summary of Conditioner Subsystem Analysis

vii

*

iii

iii

O O W 4

17
18
25
26
27
71
73
78
89
95
96

123

123

131

138

142

145

152

INC.



m ROCKETDYNE 4 A DIVISION OF NORTH AMERICAN AVIATION, INC.

Overall System Characteristics and Cemparisons . . . . . . . . . 175
Low Pressure Concept Comparisons . . « « ¢« ¢ ¢ o ¢« ¢ o o « » 175
Pressure Level Ccmparisoﬁs e s e o o s s s e e e e e s s .« 188
Selection of System Concept and Pressure Level . . . . . . . 192
Cryogenic and Storable Propellant Reaction Control System
COmpariSOnS « « o o o o ¢ o o o o o o o o o o o 0 o o0 0o« 195
Summary of System Selection « ¢« ¢ ¢« o ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ s ¢« » o 200

System Analysis and Simulation « o o o ¢ o o ¢ o ¢ o o o o o o o 227
Thrustor SImMIAtion o « o o o o o o o o o o o o o o o o o oo 227
Conditioner Simulation . « o ¢ o ¢ o ¢ o o ¢ o ¢ o ¢ o o o o 242
Summary of Systems ANAlySiS . « o ¢« ¢ ¢ o ¢ o 0o o o o o o o o 256

NomenclabuUre . o v « o « o « o o o o s s o o o o o o 0 o o o « o 285

REfErenCeS . « o o « o o« o o ¢ o o o o ¢ o o s o o o o o o o o o 289

Appendix A

Computer Deck Listing of the Main Program for Thrustor Simulation 293

Appendix B

Computer Deck Listing of Main Program for Conditioner Simulation. 303

Appendix C

Computer Deck Iisting of Subprograms for Thrustor and Conditioner

SImMUIAtion « « « ¢ ¢ ¢ o o o s 0 0 s o e s e o o 0 o o e o e s 327

Contractual Distribution . « « ¢ ¢ ¢ ¢ o o o ¢ ¢ ¢ o ¢ o o o » « 391




“ RNROCKETDYNE A DIVISION OF NORTH AMERICAN AVIATION. iINC

1.

2.

3.

4.

5

9.

ILLUSTRATIONS

Theoretical Vacuum Specific Impulse as a Function of Mixture
Ratio for Four Propellant Conditions (Pc = 100 psia, = = 50,
Full Shifting FIOW) o v o v o v v o o s 0 o 0 v o o o o o o s
Theoretical Vacuum Specific Impulse as a Function of Mixture
tio for Four Propellant Conditions (Pc = 100 psia, = = 50,
FullFrozenFlow)......................
Theoretical Vacuum Specific Impulse as a Function of Mixture
Ratio for Four Propellant Conditions (Pc = 100 psia, < = 30,
FUll Shifting FIOW) o« ¢ « o o o o o o o o o o o o o o o o o s
Theoretical Vacuum Specific Impulse as a Function of Mixture
Ratio for Four Propellant Conditions (Pc = 100 psia, £ = 30,
Full FTozeN FIOW) & o v o 4 e o o s o o o ¢ o o o o s v o o s
Theoretical Vacuum Specific Impulse as & Function of Mixture
Ratio for Four Propellant Conditions (Pc = 100 psia, £ = 10,
Full Shifting FIOW) o o o o ¢ ¢ o o o ¢ o 0 o o o o o o o o«
Theoretical Vacuum Specific Impulse as a Function of Mixture
Ratio for Four Propellant Conditions (Pc = 100 psia, < = 10,
Full Frozen FIOW) o o o o o o o s o o o s o s 0 0 s 0 s o s s
Theoretical Vacuum Specific Impulse as a Function of Mixture
Ratio for Four Propellant Conditions (Pc = 10 psia, £ = 50,
Full Shifting FIOW) o o v o o « o o o ¢ o o o o o o o o o o o
Theoretical Vacuum Specific Impulse as a Function of Mixture
Ratio for Four Propellant Conditions (Pc = 10 psia, & = 50,
Full Frozen FIOW) v o v o o o o o o s o o o o o o o o o o o o
Theoretical Vacuum Specific Impulse as a Function of Mixture
Ratio for Four Propellant Conditions (Pc = 10 psia, € = 30,
Full Shifting F1OW) o « « o o o o o o o o s o s o s 0 o o o o

ix

30

31

32

33

34

35

36

37

38



m ROCKETDYNE ¢ A DIVISION OF NORTH AMERICAN AVIATION, INC.

lo.

11,

12.

13,

14,

15,

16.

17.

18.

19.

20.

21,

22,

Theoretical Vacuum Specific Impulse as a Function of Mixture
Ratio for Four Propellant Conditions (Pc = 10 psia, < = 30,
Full Frozen FI1OW) o o o o ¢ o o ¢ o o o o o o o o 0 0 0 0o o
Theoretical Vacuum Specific Impulse as a Function of Mixture
Ratio for Four Propellant Conditions (Pc = 10 psia, € =10,

Pull Shifting FIOW) o« « o o o o o o o ¢ o ¢ o o o o 0 ¢ o o o o
Theoretical Vacuum Specific Impulse as a Function of Mixture
Ratio for Four Propellant Conditions (Pc = 10 psia, € = 10,
Full FTozen FIOW) ¢ o v o o o ¢ o o o ¢ o o o o o o o o oo oo
Resulting Mixture Temperature for Various Hydrogen and

Oxygen Inlet Temperatures o« o« o« o« o « o o o o o o o o o o o o o o
Difference Between Theoretical Specific Impulse at 100 psia and
10 psia Chamber Pressures for Shifting and Frozen Expansion . .
Theoretical Vacuum Density and Specific Impulse as a

Function of Mixture RAtio & « o « ¢ o o o o o o o o o o o o o o
Theoretical Vacuum Specific Impulse as a Function of

Expansion Ratio at a Mixture Ratio of 4,0 and Inlet Temperature
OF 200 Re o 6 4 ¢ o 6 o o 6 o s o 6 o o o o o oo s o s o eade
Theoretical Vacuum Specific Impulse as a Function of Expansion
Ratio at a Mixture Ratio of 4.0 and Inlet Temperature of 500 R. .
Ratio of Specific Heats (¥ )as a Function of Expansion Ratio

at a Mixture Ratio of 4.0 and Inlet Temperature of 200 Re o o o »
Ratio of Specific Heats (¥~ ) as a Function of Expansion

Ratio at a Mixture Ratio of 4.0 and Inlet Temperature of 500 R. .
Theoretical Vacuum Specific Impulse as a Function of Expansion
Ratio(Pc=100psia,M.R.=l.0)................
Theoretical Vacuum Specific Impulse as a Function of Expansion
Ratio(Pc=10psia,M.R.=1.0).................
Theoretical Vacuum Specific Impulse as a Function of Expansion
Ratio (P_ = 100 psia, MeRe = 2.5) ¢ o o o o o ¢ e o 0 0 oo o o

39

4o

by

L2

43

Ly

k5

L6

L7

48

L9

50

51




m ROCKETDYNE - A DIVISION OF NORTH AMERICAN AVIATION. INC.

23, Theoretical Vacuum Specific Impulse as a Function of Expansion

Ratio (P, =10 psia, KeRe =25) o v v v v v v v v v v v us 52
24, Theoretical Vacuum Specific Impulse as a Functiorn of Mixture

Ratio for Four Propellant Conditions with Helium Diluent

(P, = 10 psia, £ = 30, Full Shifting F1oW) « o o o o o o o o o o 53
25. Theoretical Vacuum Specific Impulse as a Function of Mixture

Ratio for Four Propellant Conditions with Helium Diluent

(P, = 10 psia, € =30, Full Frozen F1ow) & « o o o o o o o . o . 5k
26. Theoretical Vacuum Specific Impulse as a Function of Mixture

Ratio for Four Propellant Conditions with Helium Diluent

(P, = 10 psia, € = 30, Full Shifting Flow)s « « « v o oo o o o 55
27. Theoretical Vacuum Specific Impulse as a Function of Mixture

Ratio for Four Propellant Conditions with Helium Diluent

(Pc = 10 psia, € = 30, Full Frozen F1OW) o » o ¢ « & « o o = o o 56
28. Theoretical Vacuum Specific Impulse as a Function of Mixture

Ratio for Four Propellant Conditions with Helium Diluent

(P, = 10 psia, < = 30, Full Shifting Flow) o + o o o « o o o & o 57
29, Theoretical Vacuum Specific Impulse as a Function of Mixture

Ratio for Four Propellant Conditions with Helium Diluent

(Pc = 10 psia, < = 30, Full Frozen FloW)e « o o o o o o o o o o 58
30. Theoretical Vacuum Specific Impulse as a Function of Mixture

Ratio for Four Propellant Conditions with Helium Diluent

(Pc=10psia,€=10,FullShiftingFlow)........... 59
31, Theoretical Vacuum Specific Impulse as a Functicn of Mixture

Ratio for Four Propellant Conditions with Helium Diluent

(Pc = 10 psia, S =10, Full Frozen FIOW) & o« o o o o o o o o o o 60
32, Theoretical Vacuum Specific Impulse as a Function of Mixture

Ratio for Four Propellant Conditions with Helium Diluent

(Pc=10 psia, < = 10, Full Shifting F1OW) « o « o o o o o o o o 61



“ ROCKETDYNE o A DIVISION OF NORTH AMERICAN AVIATION. INC.

23, Theoretical Vacuum Specific Impulse as a Function of Mixture

Ratio for Four Propellant Conditions with Helium Diluent

(Pc=10psia,~’;=10, Full Frozen F1OW) « o o o « o ¢ o« s o o o 62
34, Theoretical Vacuum Specific Impulse as a Function of Mixture

Ratio for Four Propellant Conditions with Helium Diluent

(Pc=10psia. € =10, Full Shifting FIOW) « ¢« ¢ « ¢ ¢ s s o s &« 63
35. Theoretical Vacuum Specific Impulse as & Function of Mixture

Ratio for Four Propellant Conditions with Helium Diluent

(Pc=10psia,z’ =10, Full Frozen F1OW) o « o o ¢ ¢ ¢« o ¢« o o o« 64
36, Theoretical Combustion Temperature as a Function of Mixture

Ratio for Four Propellant Conditions (1>c =100 psi@) ¢« « ¢ o ¢ o 65
37. Theoretical Combustion Temperature as a Function of Mixture

Ratio for Four Propellant Conditions (Pc =10 PSi8)e o o o o o o 66
38, Theoretical Combustion Temperature as a Function of Mixture

Ratio for Four Propellant Conditions with Helium Diluent

(Pc = 10 psia, Propellant Temperature = 500 R) e o o ¢« o o o o o 67
39. Theoretical Combustion Temperature as a Function of Mixture

Ratio for Four Propellant Conditions with Helium Diluent

(Pc = 10 psia, Propellant Temperature = 200 R) o « o o « o « o o 68
40, Theoretical Combustion Temperature as a Function of Mixture

Ratio for Four Propellant Conditions with Helium Diluent

(Pc = 10 psia, Propellant Temperature: Gases at Normal

Boiling Point (02-163R,H2—37R). e s s s e s e e e e e 69
41, Theoretical Combustion Temperature as a Function of Eelium

Diluent in the Hydrogen. « o « o ¢« o o o ¢ ¢ o ¢ ¢ s 06 ¢ 06 0 o » 70
42, Conceptual Schematic of 20 Pound-Thrust, 10 Psia Full-

Flow ThrustOr. o « o o o o o o o o o o o o o e o o s s s o o o o 104
43, Conceptual Schematic of 20 Pound-Thrust, 100 Psia Fulle

Flow ThTustore « o o ¢ o o o o ¢ ¢ o ¢ ¢ o ¢ o s s s o s o o« o s 105




m ROCKETDYNE L4 A DIVISION OF NORTH AMERICAN AVIATION, INC

44, Conceptual Schematic of 100 Pound-Thrust, 10 Psia Full-

Flow ThTustor o ¢ ¢ ¢ o ¢ ¢ ¢ ¢ o o o o o o ¢ o ¢ o ¢ ¢ ¢ o o o 106
45, Conceptual Schematic of 100 Pound-Thrust, 10 Psia

Truncated Spike ThIUSEOT: ¢« o o o o o o o o « o o o o o o o o o 107
46, Catalyst Bed Design CONCEDLSe « o o « o o o ¢ e ¢ « o ¢ o o o » 108
47, Truncated Spike Catalyst Bed Design ConceptSe o « o « o o o o « 109
48, Low Pressure Injector-Mixer COnceptS. « « « o « o ¢ o o o « o 110
49, Flame Velocity Data Available from Literature o« o o o o o o o o 111
50. Flame Velocity Extrapolated Data to 60 R and 210 R for

Turbulent and Laminar FlameS. « o « o o o o o« o o ¢ ¢ o o o « o 112
51 Maximum Reactor Bed Flow Area Ior Flashback Prevention as a

Punction of Upstream Pressure in a 20 1bf, Thrustor . « « « « » 113
52, Maximum Reactor Bed Flow Area as a Function of Upstream Bed

Pressure at 100 lbf. Thrust Level to Prevent Flashback for

Two Propellant Inlet Temperatures « o o o o ¢ o o o o o ¢ o o o 114
53« Theoretical Minimum Reactor Bed Length Required for Complete

Reaction (H2/02) as a Function of Superficial Mass Flux for

Two Catalyst TyDPeSe o e o ¢ « ¢ ¢ ¢ o o ¢« @« ¢ @ s o 6 o« o o o o 115
54. Theoretical Pressure Drop Per Unit Length of a Reactor Bed

Composed of MFSA-1/8 Catalyst as a Function of Superficial

Mass Flux for Nominal Bed Pressures of 100 and 10 psia. « « & » 116
55. Theoretical Pressure Drop Per Unit Length of a Reactor Bed

Composed of MFSA-1/16 Catalyst as a Function of Superficial

Mass Flux for Nominal Bed Pressures of 100 and 10 psige o« o o o 117
56. Pneumatic filling Constant to 95% Steady State Pressure for

Various Assumed Sizes of Reactor and Steady State Temperatures. 118
57. Thermal Response (Time to 90% of Steady-State Reacted Gas

Temperature) for MFSA-1/8" and MFSA 1/16" Catalyst as a

Function of Superficial Mass Flux at the Optimum Bed Length . . 119

xiii



58.

59.

60,

61.
62.
63.
64,
65.

66.

67,

9.

0.

T1.

ROCKETDYNE . A DIVISION OF NORTH AMERICAN AVIATION, INC.

Experimental Results for 150-1b Catalytic Thrustor Operating
on 500° R Propellants (OZ/HZ)' Characteristic Length is

Defined in Terms of Combustion Volume Downstream of Catalytic

Bed. * * o 8 e o L d L4 L] * L L] L] L L] L] L] * L] L L] L] L] L J [ 4 L 4 * L] L[] [ ]

Predicted Heat Transfer Coefficients for a 20 Pound-Thrust
Hydrogen-Oxygen Engine with Two Nozzle Desigs, an 80% Bell

Nozzle and a 17.5° Core Nozzle - 10 psia chamber Pressure . .

Predicted Heat Transfer Coefficients for a 20 Pound-Thrust
Hydrogen-Oxygen Engine with Two Nozzle Designs, an 80% Bell
Nozzle and a 17.5° Core Nozzle - 100 psia Chamber Pressure
Conditioner Power Requirements for Steady Propellant Flow, . .
Conditioner Requirements With No Phase Chang€e o« o« o o o o o o
Conditioner Requirements with Phase Change « o« o« « o o o o « o
Schematic Representation of Direct Heating(Chemical)
Propellant Conditioner Unite « o ¢ © o o ¢ o o o .-. e o o o o
Schematic Representation of a Heat Exchanger Propellant
Conditioner Unit o o o o ¢ o o o o ¢ ¢ o o ¢ 6 ¢ ¢ 0 0 0 ¢ 0 o
Schematic Representation of a Pump Fed Heat Exchanger
Propellant Conditioner Tnit. o o ¢ ¢ o o o ¢ ¢ o ¢ o ¢ o o o o
Schematic Representation of a Hot Tube Heat Exchanger
Propellant Conditioner Unite « o o« o ¢ o ¢ o 6 o 6 ¢ o 0 o o »
Heat Exchanger Thermal Response Time as a Function of

Hot Gas Pressure DIOPe o « o o o o ¢ o ¢ o ¢ ¢ 6 6 o o o s o o
Specific Energy Requirements for a Pump-Heat Exchanger
Propellant Conditioning System « « o o« o o o o o ¢ o o o o o o
The Effect of Insulation Thickness on Propellant Consumption
Required to Make-up Heat Leak to Vacuum for a 220-day Mission,
The Effect of Maximum Heat Exchanger Tube Wall Temperature on
Heat Loss to Vacuum for a 220-day Mission Showing the Effect
0f Changes in HBeat Exchanger SiZ€. « o « o o o o o o o o o o o

120

121

122
161
162
163
164
165
166
167
168

169

170

171




m ROCKETDYIMNE ¢ A DIVISION OF NORTH AMERICAN AVIATION, INC.

| 72. The Effect of Conditioner Outlet Temperature on Propellant

Requirements for Conditioning. . « ¢« & ¢ ¢ ¢ ¢ v ¢ ¢ ¢ o o » 172
73« Thrustor ISP Versus Conditioner Temperature, Rt v v e e e o 173
74. Conceptual Flight Design of the Gas Generator and Heat

Exchanger for the Hydrogen Conditioner « o o o o o o o o ¢ « o » 174
75« System Weight Characteristics Illustrating the Effect of

Propellant Temperature at the Conditioner EXit o ¢ o o « o « « o« 208
76. Comparison of System Weights for Four Conditioner System

Concepts o o o o o ¢ o ¢ ¢ o 6 ¢ 0 0 0 o o 6 0 o0 eeeeses 209
T1. Variation of Heat Exchanger Conditioner Weight with Hot Gas

Temperature at Heat Exchanger Inlet (System with Accumulators) . 210
78. Comparison of System Volume for Four Conditioner Concepts. . . » 211
9. VSystem Weight Comparison for a Steady State Propellant

ConditioneTe o o o o o o ¢ 6 ¢ ¢ o o s 0o 0 0 00 0¢eeoeese 212
80, Variation of Heat Exchanger Conditioner Weight with Hot Gas

Inlet Temperature (System without Accumulators)e ¢ o o o o o o o 213
8l. System Volume Comparison for a Steady State Propellant

CONditioners « o o o o o o o o o o o o o o o o oo e noosos 21k
82, Weight Savings Resulting from a Combined Regenerative -~ Hot

Tube Heat Exchanger Conditioning SysteMe o« o o v o ¢ o « o o o« o 215
83, Volume Savings Resulting from a Combined Regenerative - Hot

Tube Heat Exchanger Conditioning SystemMe o o o o o o o o o « o o 216
84, Weight Ratio of Valves and Catalyst Packs for Systems with

Multiple THIuStOTS o « o o o o o o o ¢ o o ¢ o ¢ ¢ ¢ s o ¢ o o« o 217
85, The Effect of the Number of Thrustors Per Module on System

Weight o o o v o o o s o o 00 o o s o s oo asnaeeeeees 218
86. Effect of Pressure on Propellant Conditioner System Weight » . . 219
87. The Effect of the Number of Thrustors per Conditioner on

System Weight for Two Conditioner Concepts and Two Pressure

Levels (10 and 100 PSi8) « o o o o o o ¢ o o s o o o o a o o o« o 220



m ROCKETDYNE . A DIVISION OF NORTH AMERICAN AVIATION, INC.

88. Low Pressure and High Pressure Module Weight Comparison for

a Hot Tube Heat Exchanger Concept .« « « « ¢« ¢ & ¢« o ¢« ¢ « . . 221
89. Low Pressure and High Pressure Module Volume Comparison for

a Hot Tube Heat Exchanger Concept « « « ¢« &« ¢ ¢ o o ¢« v o « o« 222
90. Comparison of System Weight (Module for 4 Thrustors)

Storable (NTO-MMH) RCS with a Low Pressure Cryogenic

(02-H2

Propellant Tezperature of 200 R) v v o v v & v v v v v » o o 223

) RCS Utilizing Main Tank Propellants (Conditioned

9l. Comparison of System Weight (Module for 4 Thrustors)
for a Storable (NTO-MMH) RCS with a Low Pressure Cryogenic
(0,-H,) RCS Utilizing Main Tank Propellants (Conditioned
Propellant Temperature of 400 R) '« v ¢ v ¢ v o « o« « o o « » 224
G2. Comparison of System Weight (Module of 4 Thrustors) at
Large Total Impulses for a Storable (NTO-MMH) RCS with
a Low Pressure Cryogenic (02—H2) RCS Utilizing Main Tank
Propellants (Conditioned Propellant Temperature of 200 R) . . 225
93. Comparison of 3ystem Weight (Module of 4 Thrustors) for
a Storable RCS with Two Cryogenic Systems (Conditioned
Propellant Temperature of 200 R) « v « o « o o o o o o « « « 226
94. Schematic of Thrustor for Modeling Purposes . . . « . . « . . 259
85. Comvuter Model Schematic of Thrustor . « « « ¢ ¢ ¢ ¢« « « « « 260
96. Outline of Main Program Computation Sequence . . « « « « « . 261
97. Change in Cetalyst Bed Combustion Temperature as a Function
of Inlet Pressure for D.S.I. with Catalyst Bed Pressure
Drop and Nominal Pressure as Parameters . . . . . . . . . . . 262
88. Change in Thrust as a Function of Inlet Pressure for D.S.I.
with Nominal Pressure and Bed Pressure Drop as Parameters . . 263
99. Changes in Catalyst Bed Combustion Temperature as a Function
of Inlet Pressure for Full Flow with Catalyst Bed Pressure
.Drop as a Parameter « « « ¢« ¢ ¢ ¢ o 4 4 e 4 4 e 00 e e e .. 261,




m ROCKETIDYNE . A DIVISION OF NORTH AMERICAN AVIATION, INC.

100.

101.

102 L

103.

104.

105.

106.

107.

108.

109.

Dynamic Analysis Evaluating Sensitivity of Thrustor
Operation to Upstream Conditions--Pressure and Thrust
Characteristics for Uxidizer-Rich Operation . . « « « « « &«
Dynamic Arnalysis Evaluating Sensitivity of Thrustor
Operation to Upstream Conéditions--Temverature and

Specific Impulse Characteristics for Oxidizer-Rich
OPeration o o o ¢ o o ¢ o o o o o o a4 6 4 s s 6 e e e s o
Dynamic Analysis Evaluating Sensitivity of Thrustor
Operation to Upstrean Conditions~-Flowrates and Mixture
Ratio Characteristics for Oxidizer-Rich Overation . . . . .
Resnonse Characteristics of a Full-Flow Thrustor with

a 0.525-inch C~talyst Bed - Valve Operation and Pressure
RESDONSE ¢« o o o o o o o o o o o o o o o o o s s o s o o
Response Characteristics of a Full-Flow Thrustor with

a 0.525-inch Catalyst Bed -~ Temperature Response . . . . .
Fesponse Characteristiecs of a Full-Flow Thrustor with

a 0.525-inch Catalyst Bed - Flowrate and Mixture Ratio
CharacteristicCs « « « ¢ o o o o o o ¢ o o o 2 o o o o s s »
Conditioner Model Schematic « « ¢ ¢ & o ¢ ¢ ¢ ¢ o o ¢ o o «
Conditioner System Dynamics for Saturated Vapor Propellant
Delivered from the Propellant Tank and for a 3teady
Thrustor Demand - Valve Uperation, Flowrate Dynamics,

and Oxygen Accumulator Pressure Dynamics .« « . « « « « « &«
Conditioner System Dynamics for Saturated Vapor Propellant
Delivered from the Fropellant Tank and for a Steady
Thrustor Demand - Thermal Resbonse for the Oxygen
Conditioning Subsystem .« ¢ « ¢ ¢ ¢ ¢ o s o o o o o o o o
Conditioner System Dynamics for Saturated Vapor

Provellant Delivered from the Propellant Tank and

for a Steady Thrustor Demand - Pressure Resvonse for

the Oxygen Conditioning Subsystem . . . « . . ¢« . o ¢ « « &

264

266

267

268

269

276

271

272

273

274



m ROCKETDYNE . A DIVISION OF NORTH AMERICAN AVIATION, INC.

110. Conditioner System Dynamics for 3aturated Vapor

Propellant Delivered from the Propellant Tank and

for a Steady Thrustor Demand - Flowrate Response for

the Oxygen Conditioning Subsystem « « « « « ¢« + ¢« ¢ + o « « 275
111. Follower Valve Schematic and Installation in Oxygen

Side Of CONAStiONeT « « « + o o o o o o o o o o o o o o o . 276
117. Results for Simulated Conditioner Uverstion with =

Steady Hydroren Accumuleter [ ressure - Valve Operation. . . 277
113. Results for Simulated Conditioner Operation with a

Steady Hydrogen Accumulator Pressure - System Pressures . . 278
114. Results for Simulated Conditioner Operation with an

Oscillating Hydrogen Accumulator Pressure and Follower

Valve Control - Valve Operation « . « « ¢« ¢« v ¢ ¢« ¢« « + « o« 279
115. Results for 3imulated Conditioner Operation with an

Oscillating Hydrogen Accumulator Pressure and Follower

Valve Control - System Pressures .« . « ¢« « « ¢ « « « « o « 280
116. Results for Simulated Conditicner Operation with an

Oscillating Hydrogen Accumulator Pressure and On-Off

Velve Control - Valve Cveration . « « ¢ ¢« ¢« « o o ¢« ¢ « o 281
117. Results for Simulated Conditioner Operation with an

Oscillatins Hydrogen Accumulator Pressure and Cn-Off

Valve Control - System Pressures . « ¢« = ¢« ¢« ¢« ¢« « ¢« + +» « 282

118. Accumulator Sizing Chart Based on Valve Response . . . . . 283

xviii




.;l NROCKETDYIMNE ¢ A DIVISION OF NORTH AMERICAN AVIATION, INC.

TABLES

1, Mission Applications . o v v 4 4 4 4 o v o o o o o o 0 0 e 0 s . 16
2. Results for Bray Criteria Analysis of Composition Freezing
Point During Combustion Gas EXpanSioNe « « o « « o o o o o o o o 29
3 02/H2 Attitude Control Conical and Bell Nozzle DeSighs o o o o o . 98
4, OZHé Attitude Control Spike Nozzle DeSighS. « o « o « ¢ o o « o » 99
5. Bell Contour for 02/H2 Attitude Control Engines. . . « o « o » o » 100
6. Plug Contour for 02/H2 Attitude Control Engines ( = 50:1)s « . o 101
7. Plug Contour for 0,/H, Attitude Control Engines (: = 10:1). . . . 102
. 8+ Performance and Heat Transfer Results for Typical Catalytic
02/H2 Thrustorse o o o o o 0 4 o o 6o 0o o o 600 s 0 s e ooeeoe. 103

9. Comparison of Isotope Power Sources for a 12.8 Kilowatt

Requirement . . 4 & ¢ ¢ ¢ v 6 6 o ¢ 0t e 00 e v o e o eese 155
10. Estimated Weights of Pressure RegulatorS o o o o o o o « « o o « o 156
11, Overall Material Balance for Steady-State Operation of

Proposed Conditioner « o o « o « o ¢ o o o o 0 0 0 o o o ¢ oo « o 157
12, Details for Steady-State Operation of Proposed Design of

Oxygen Heat EXChanger. o o « o « o ¢ o o o o o o o o s o a o o o o 158
13. Proposed Steady-State Design of Hydrogen Heat Exchanger. . . « « 159
14, Sample Specific Impulse Analysis and Comparison For

Direct and Indirect Conditioners (Case II) v v v v v v o o o o o o 160
15. Reliability of Conditioner Subsystem ConceptS. « o« o ¢ « o o « o+ o 203
16, Comparison of Major Failure MOA€Se « « o o o o o o o o o o o o « o 204
17, System Maximum Power RequirementS. « o o o o ¢ o o o o o o o o » o 205
18, Reliability COMPATiSON o ¢ o ¢ o o o o o ¢ ¢ o 6 ¢ o o o o o o o o 206
19, Summary of the Concept Comparison for System with Pulse-Mode

Capability « o o o o o o o 6 o o o o o o o 0 ¢ e o o v o oo e 207
20, Computer Model Input and OULPUL. « o o o o o o o o o o o o o o o o 257
21, Input Data and Format for Conditioner Modeling Computer Program. . 258

xix



llhl ROCKETDYMNE . A DIVISION OF NORTH AMERICAN AVIATION, INC.

SUMMARY

The use of the cryogenic propellants, hydrogen-oxygen, in upper stage
rocket propulsion systems is desirable due to the higher energy
release of such propellants. To date, cryogenic-propellant reaction
control system development has not kept pace with the larger crrogenic
propellant propulsion systems, thereby creating a technological void
in the reaction control spectrum. The development and use of a cryo-
genic reaction control system would reduce the number of propellant
combinations required on board a vehicle utilizing cryogenic propel-
lants, thereby decreasing overall vehicle complexity and increasing
reliability. The cryogenic reaction control system approach, however,
could magnify some of the presently known technical problem areas

or introduce new problem areas, such as: ignition techniques, multiple
start requirements, propellant conditioning and control, and thrustor
durability.

In particular, since the hydrogen and oxygen propellants utilized in
a reaction control thrustor may be drawn from the main propellant
tanks in the gaseous state (i.e., as vent gases with the possibility
of small quantities of liquid propellant or gaseous pressurant inter-
mixed) or from separate independent tankage in the liquid state

(with subsequent vaporization and two-phase flow in the propellant
lines), difficulty in controlling thrustor inlet conditions and mixture
ratio may be encountered. Therefore this problem was expected to
dominate thrustor design and control design, and would necessitate
use of propellant conditioning equipment to control the state of the
injected gaseous propellants,
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The basic purpose of this program was to investigate the above problem
areas and thereby ascertain the feasibility of a cryogenic reaction
control system for spacecraft applications, and to generate basic
system design data that could be utilized during the ultimate develop-
ment of an operational system. Accordingly, a lé-month program has
been conducted to evaluate the potential for a reaction control system
utilizing the cryogenic axygen-hydrogen propellant combinations.
Analysis and concept design are reported herein (Volume I). Component
design and experimental results are reported in Volume II.

Illustrative system appiications were campiled to supplement the
generalized operating and design goals established for this program
and to identify possible operating constraints. Possible applications
were identified as: propellant settling engines, stage recovery
power, attitude control, and secondary propulsion for orbital tankers.
The most useful range of thrust was found to be fram 20 to 100 pounds,
and chamber pressure levels were indicated to be either 10 psia or
100 psia.

Existing computer programs were used to calculate the theoretical
performance in terms of the thermodynamic state and compositions of
the exhaust products, and obtain estimates of probable compositional
freezing during the expansion process, The 10 psia pressure oxygen-
hydrogen performance characteristics differ from those at the 100
psia level in a significant manner., One effect is that performance
optimizes at different mixture ratios, This leads to optimized per-
formance for the 10 psia level with substantially lower combustion
temperatures,

The cryogenic RCS was divided into two distinct component subsystems
such that the experimental study would be consistent with the very
general nature of the program goals., One subsystem was defined to
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condition the propellants to a given thermodynamic state regardless

of the inlet state; the other subsystem consisted of the thrustors,

Bbased on the overall N3 application analysis the low pressure (10
psia) system was selected for experimental investigation in this
program chiefly because of the total lack of existing technology at
this pressure level for both the conditioner and thrustor. Analysis

of the conditioner operations showed pressure control to be critical
in maintaining the thrustor catalyst bed temperature in a range which
prevents bed burnout. However, even a small relaxation in the pressure
requirement (i.e., increasing maximum thrustor operating pressures oy
a few psia) may markedly alter the criticality of the control problems.
Three types of pressure control were analytically evaluated; (1) a
pressure sensor operating an on-off valve, (2) a regulating device,
and (3) a vellows-bladder device connecting these two propellant

flow systems. Since suitable of'f-the-shelf control coniponents were

not available for the experimental program, modified components were
utilized in z best-effort approach. A "hot tube" heat exchanger system
with 02-H2 combustion product feed back was chosen for the conditioner
subsystem with the entire subsystem pneumatically decoupled from

the thrustors.

The thrustor design concepts study resulted in the selection of a
cylindrical chamber with a simple conical nozzle and an in-line catalyst
hed which would be designed to operate at a mixture ratio of 1. Down-
stream injection of additional exyzen would be employed to raise the
overall thrustor li.R. to a design value of 2.5, The thrustor propel-
lant inlet feed temperature of 200 i was selected as the desisgn point
in order to assure reliabvle ignition without oxygen freezing. To
prevent freezinsg requires both propellants to be in excess of zbout

115 R.
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Mathematical models of the conditioner and thrustor were developed and
programmed for computer solution. The resulting dynamic simulation
was used to examine the operation and response characteristics of the
system and to determine the key operating and design parameters.

Analysis presented herein served as the basis for detailed design of
components to be used in the experimental program reported in Volume II

of this report. Design concepts and alternatives are analyzed and
evaluated,
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INTRODUCTION

The application of cryogenics (02/H2) as the main propellants in advanced
upper stages, and manned and unmanned spacecraft also opens the possi-
bility of utilizing a cryogenic reaction control system (RCS) in these
vehicles. To date, only cold gas, liquid monopropellant, and storable
bipropellant systems have been utilized for reaction control. All of
these systems suffer some disadvantages when applied to advanced vehicles.
The cold gas systems (chiefly nitrogen systems) have a low specific
impulse, a low density impulse, and heavy tankage requirements. The
monopropellant systems (hydrogen peroxide and hydrazine) are charac-
terized by fairly low impulses ( ~ 250 seconds) and propellant freezing
difficulties when located in a cryogenic vehicle. The storable bipropellants
have higher specific impulses, but again the system must be insulated
and/or heated to eliminate the possibility of propellant freezing. A new
approach to advanced reaction control systems by utilizing cryogenic
propellants would seem to offer a way to circumvent many of these problems.
Further, a low pressure system might also utilize the boiloff propellants
during long duration coast periods, thus minimizing tankage complexity.

A higher pressure system, although not possessing the latter advantage,
could take advantage of the temperature compatibility for storage purposes.

The use of the oxygen-hydrogen propellant combination does introduce the
additional problem of ignition since the combination is not hypergolic.
For this case of a multiple engine system, catalytic ignition offers a
simple, reliable approach. However, this approach does require that the
temperature of the hydrogen fed to the thrustors be sufficiently high to
avoid the formation of solid oxygen upon propellant mixing. The formation
of solid oxygen has been shown to result in unreliable and in some cases,
destructive ignition. Hence, some method of increasing the propellant
temperature is necessary.
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The thermodynamic state of the inlet propellants to the thrustor will
directly affect propellant flow control. To simplify the control re-
quirements, the conditioning system should deliver propellants at
controlled conditions. Also, in the case of the low pressure system,
if the system is to utilize main tankage propellants, then the RCS must
be able to accept the propellants in various thermodynamic states from
liquid at the normal boiling point to gas at elevated temperatures and
with varying amount of helium diluent. The propellant must then be
conditioned to a given state to aid in the overall control of the thrust
level and propellant mixture ratio. The control requirements for the
high pressure system should be less severe, since the propellants leaving
| the storage tanks will remain at a relatively static thermodynamic state.

This report covers the initial phases of a 1l6-month applied research
program which evaluated a cryogenic RCS utilizing the Oxygen-hydrogen
propellant combination. The overall program objectives included the
exploration of possible problem areas in such a system as well as demon-
strating the feasibility of such a system. For conceptual purposes, the -
RCS was divided into two subsystems; (1) the thrustors, and (2) a con-
ditioner to adjust and control the thermodynamic state of the ﬁropellants.
The program consisted of six tasks as follows:
I. Thrustor analysis and Conceptual Design
II. Conditioner Analysis and Conceptual Design
ITI. Thrustor Design and Fabrication
IV. Conditioner Design and Fabrication
V. Thrustor Evaluation Tests
VI. Conditioner Evaluation Tests

The initial efforts, which are reported herein, consisted of initial
conceptual design, concept analysis, design criteria analysis, and concept
‘ evaluation efforts., The objectives of these efforts were to evaluate a
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number of subsystem concepts and select the most promising as well as a
chamber pressure level (10 or 100 psia) for the remainder of the program.
The final effort wasthen aimed at defining the subsystem designs, experi-
mentally evaluating subsystem components, analytically evaluating the
results with respect to the establishment of clearly defined design

criteria, and demonstrating the feasibility of the subsystems.

A number of basic design parameter and operating goals were defined

prior to initiation of this program:

Thrust (each thrustor) 20 1v,

Expansion Area Ratio 50:1

Mixture Ratio (0/F) from 0.5 to 6.0
Duration 60 minutes
Minimum Impulse Bit 1 1bf~sec.
Ignition Delay (maximum) 10 milliseconds
Mission Time 1 hour to 220 days

The program is to initially consider two chamber pressure levels, 10 psia
as representative for main tank propellant utilization and 100 psia as
representative of separate cryogen tankage. Further, the system design
should be based on supplied propellants at the following compositions

and thermodynamic states:

Hydrogen Thermodynamic State - 37R liquid to SOOR gas, in single
and mixed phases

Oxygen Thermodynamic State - 163R liquid to S5O0R gas, in single
or mixed phases

Propellant Composition - propellants containing O to 50 percent
helium pressurant at the 10 psia chamber pressure level,
pure propellant at the 100 psia pressure level

Supply Pressures - 20%5 for 10 psia chamber pressure, 17515
psia for 100 psia chamber pressure.

INC.
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The analytical efforts are divided into six areas for reporting purposes;
Applications Review, Theoretical Performance, Component Analysis-Thrustor,
Component Analysis-Conditioner, Overall System Characteristics and Compari-
sons, and System Analysis and Simulation.
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APPLICATIONS REVIEW

Possible system applications were compiled to supplement the operating
and design goals established in the program work statement and to more
clearly define typical applications for a cryogenic RCS. Meetings were
held with several government vehicle contractors in which ideas and infor-
mation pertinent to cryogenic RCS applications were exchanged. Also, the
available literature dealing with the propulsion requirements for future
stages and vehicles. The results as they affect the focus of the subject
program are discussed below.

UTILIZATION OF CRYOGENIC REACTION CONTROL SYSTEMS

The applications of a cryogenic RCS have been divided into four general
areas; propellant settling, attitude control, orbital tanker maneuvering,
and residual propellant utilization for extra;\ V or spent stage maneuver-
ing (recovery). To present the results in a concise form, the application
requirements and typical operating conditions are summarized in Table 1.
These are discussed in greater detail below.

Propellant Settling

The substitution of cryogenic propellant settling engines for existing
monopropellant or storable bipropellant engines offers the advantage of
appreciable gains in specific impulse with commensurate decreases in
weight, The thrust range of applicability is from 10 to 80 pounds-thrust,
with the greatest interest in the 50 to 80 pound-thrust range. Since a
typical settling engine application is a single steady-state firing for




m ROCKETDYNE o A DIVISION OF NORTH AMERICAN AVIATION, INC.

a 1 to 60 minute time period, rapid response is not a requirement. However,
for the longer duration applications an appreciable savings in total RCS
weight could be realized with the use of a high impulse propellant such

as oxygen/hydrogen.

The use of cryogenic (02/H2) settling engines on future spacecraft with
cryogenic main propulsion systems offers compatible storage and high
performance. In addition, the possibility of utilizing propellants drawn
from the main propellant tanks offers a more simplified storage require-
ment. DBecause fast response is not a requirement and start transients
will be only a minor portion of the rather extended run duration, it is
expected that a design for this application will be considerably different
than for the remaining applications. In particular, a boot-strapping,
integrated thrustor-conditioner engine with regenerative conditioning

is thought most attractive from a conceptual standpoint.

Attitude Control

Cryogen reaction control systems are attractive possibilities for attitude
control in future cryogenic spacecraft and upper stages. Two factors are
favorable, the increased performance of such a system when compared to
cold gas, monopropellant, and storable bipropellant systems and much
improved storage temperature compatibility. The attitude control functions
for these advanced vehicles include limit cycle control during long-term
coast periods, vehicle orientation for course correction, and reorienta-
tion and control during deceleration manuevers. Typical advanced
spacecraft where a cryogenic RCS might be used in an attitude control
function include cryogenic kick stages, nuclear kick stages, and cryogenic
logistics vehicles. These would typically be aimed at planetary or lunar

missions.

10
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The attitude control requirements accompanying an application in a kick
stage on a Mars mission (0.2 to 60 pound-thrust range) are listed below:

Usage Time
After Launch Function Firing Mode
10 minutes Separation Stabilization (pitch, Variable: minimum bit
yaw, roll) to 50 seconds continuous
10 minutes to Attitude Control Limit Cycle Minimum impulse bit,
220 days (pitch, yaw, roll) S~hour cycle period
for each axis
3 days to Vehicle Reorientation (180 10 seconds continuous
194 days degrees maximum in each axis) per thrustor

The use of the hydrogen boiloff as a cold-gas propellant for attitude
control during interplanetary coast has been considered. The boiloff rate
during this phase of the mission would be substantially greater than the
hydrogen supply needed for the cold-gas propulsor. Thus the same thrust
chamber might be used in a cold-gas operational mode for small impulse bit
requirements and in a bipropellant mode for the higher impulse requirements.
Such a scheme would conserve oxygen which has the low boiloff rate and would
seem most applicable with the low pressure system utilizing only propellants
supplied from the main propellant tankage.

The thrustor usage requirements of a cryogenic propulsion module to be used
on a lunar logistic mission (4 to 8 pound-thrust range) include the following:

Usage Time

After Launch Function Firing Mode

1.5 hours Separation Stabilization (pitch, Variable: minimum bit
yaw, roll) to 50 seconds continuous

1.5 hours to Attitude Control Limit Cycle Minimum bit, S~hour

8 days (pitch, yav, roll) period each axis

14 to 140 hours Vehicle Reorientation (180 degrees 10 seconds for yaw
maximum in 2 axes) and roll

1l
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Specific information is not available concerning the secondary oxygen-
hydrogen propulsion requirements for a nuclear spacecraft for a manned Mars
mission. A probable thrust level would be from 75 to 300 pounds with both
pulsing and steady state operational modes. These engines typically would
be used for a transfer from a parking to assembly orbit, docking and assem-
bly, earth departure, Mars breaking, Mars departure, and attitude control

during coast.

In general, the attitude control application requires a rapid response.
Although the specifics with respect to response times are not defined,
time to 90 percent thrust of 50 milliseconds are thought to be near the
upper limit. Because of the heat sink attributes of a packed catalytic
bed, such a response with an initial cold bed is not expected. Thus, for
an application demanding a low usage rate over an extended time period,
the system would seem to have disadvantages. Conversely, for an applica-
tion with a high usage over a short time period, such & factor would not
be significant since the bed would remain at an elevated temperature.

Typical attitude control functions require a number of RCS modules:placed
at opposing points on the vehicle. With such an arrangement, it is not
clear, a priori, whether separate propellant tankage for the

RCS system or whether propellant feed from the main tankage represents

the more favorable arrangement. Both must be considered.

Orbital Tanker Manuevering

Advanced vehicles to accomplish a cryogenic propellant supply function are
presently under study. The use of a cryogenic RCS as a secondary propulsion

system for such an unmanned vehicle would seem to merit consideration.

12
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The thrustor usage requirements for the secondary propulsion system of an
orbital tanker utilizing 150~ and 300-pound-thrust engines are thought to
be:

Maximum Number

Function Operational Mode of Starts
Transfer Midcourse Steady State 1l
Correction
Injection at Assembly Steady State : 1l
Orbit Stabilization
Station Keeping Pulsing 25
Rendezvous Stabilization Pulsing 20
Closure Maneuver Steady State 4
Docking Pulsing 50

Performance of the engines was not considered to be of importance for any
of the above functions except the closure maneuver and docking since these
two functions should consume essentially all of the propellants required
for propulsion. Since these maneuvers take place over a short time period
during which the catalytic bed will remain at temperature, pulse-performance
should be high with negligible enthalpy loss. However, pulse repeatability
for several of the other maneuvers which may occur over a longer time

period is a factor which must be evaluated.

Thermal compatibility of the cryogenic RCS system with the main propellant
tankage would seem an advantage for this application. Again, a priori
selection of either separate propellant tankage or a propellant feed

from the main tankage is not possible.

13
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Utilization of Residual Propellants in Spent Stages

Cryogenic RCS technology might be applied to a secondary propulsion system
directed at utilizing residual propellant to obtain additional ZSV or to
accomplish stage maneuvering prior to spent stage recovery. A wide mixture
ratio capability of from 0.5 to 6.0 would probably be necessary to insure
efficient utilization of the residuals. It is noted that the relative
quantities of the residual propellants is not exactly predetermined, but is
dependent on mainstage propellant utilization. Firing durations of up to
one hour are thought applicable. Response for such an application should
not be a prime requirement and the operational concept for this application

might well be similar to that of a settling engine.

The RCS system for such a system would necessarily utilize propellants fed
from the main tankage. The main tankage pressures might initially be in

the range of 20 - 40 psia with tankage pressure maintained via heat leakage
to the tankage. Pressure control restraints for such a system which would

determine the RCS operational pressure range are not presently defined.

APPLICATIONS SUMMARY

This effort has shown a number of possible applications for a cryogenic
reaction control system; propellant settling engines for stages and space-
craft, cryogenic stage recovery, attitude control for stages and spacecraft,
and secondary propulsion for orbital tankers. Although the possible thrust
level ran from 0.2- to 1000-pounds-thrust, the range of greatest interest
is from 20- to 100-pounds. Both steady-stage and pulse mode operation are
of importance, with pulse reproducibility being of greatest importance in
the latter operational mode. Two chamber pressure levels are of interest,
10 psia and 100 psia. The low pressure systems offer intriguing possibili-
ties for integrating the secondary propulsion systems with the main propellant
tankage and so, are quite attractive to the vehicle designer.

14
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It is also significant that, in the cases of main tankage propellant
utilization, the oxygen is generally available at higher pressure than
the hydrogen--typically, 30 psia as opposed to 20 psia. However, the
10 psia chamber pressure level initially selected would seem to be
approximately correct. Also, in general, helium dilution of the
hydrogen is generally thought of in terms of small percentages, whereas
substantial dilution of the oxygen is thought probable.

The high pressure system (100 psia) on the other hand, can be considered

to be more directly competitive with currently existing storable systems.
As such it would have to compete on the basis of impulse performance,

total system weight, response characteristics, etc. The relative advantage
trade~-offs for the several systems will require a very careful study to
enable the designer to optimize the vehicle. Further, it will be necessary
to have in hand sufficient experimental design technology related to the
cryogenic systems to enable a complete comparison of the various systems
for the selection of an optimized vehicle design for any one application.

15
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SYSTEM THEORETICAL PERFORMANCE ANALYSIS

The theoretical performance establishes a basis for the design and
evaluation of the reaction control system and for the selection of
the thrustor and conditioner operating conditions. In addition,

the theoretically computed physical properties of 02-Hz reacted mix-
tures were used for the design of the thrustor and conditioner sub-
systems. Existing Rocketdyne computer programs were used to calculate
the thermo-chemical properties of the reaction products and the theo-
retical performance limits. The performance limits were calculated
for gas expansion with full shifting flow and with frozen chemical
compositions. A modified Bray analysis computer program was used

to estimate the compositional freezing point in the expansion to

allow interpretation of the performance results.

The reaction control system was first considered as a single adiabatic
system (no heat loss or gain), the internal processes of propellant
conditioning and thrustor performance not being considered. Thus,

the system was treated as a black box in which it was assumed that:

1) all the necessary conditioning processes are fulfilled,

2) all of these processes are accomplished with no losses,

3) no materials, geometric, cooling, or other limitation prevents
the system from responding according to the thermo-chemical

dictates.

Specific impulse was the performance parameter that was evaluated with
the overall system approach.

To approach a more relaistic evaluation of actual system performance,
the overall system was subdivided into thrustor and conditioner sub-
systems. These were considered as black-box subsystems for the purpose

of calculating theoretical performance. Idealizations similar to those

17
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considered above for the overall system were again applied to these
subsystems. The results of the overall system analysis are also
applicable to the theoretical component analyses. Following this
effort, each subsystem was evaluated with respect to realistic con-
figurations and real losses due to inefficiencies. These component

performance analyses are presented in later sections of the report.

OVERALL SYSTEM PERFORMANCE

From an overall, idealized system standpoint, the reaction control
can be considered as a black box; i.e., an isoclated system with no
losses. Propellants are fed to the system and thrust is delivered.
The specific enthalpy and composition of the combined propellants de-
livered from tankage determine the operation of the system., Several
parameters were explicitly examined in the overall system performance
evaluation:

1) The thermodynamic state of the entering propellants; speci-
fically, the inlet propellant temperature and degree of helium
dilution (for the 10 psia system)

2) Mixture ratio

3) Recombination rates during expansion and recombination effects

on performance

18
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The theoretical performance level and its dependence on mixture ratio,
propellant inlet temoerature and state, chamber pressure, and expansion
area ratio are shown generally in Figs. 1 through 12. Figures 1
through 6 show specific impulse at a chamber pressure of 100 psia for
full-shifting and full-frozen flow, and expansion area ratios of 50,
30, and 10; Figs. 7 through 12 show the specific impulse for the same
conditions but at a chamber pressure of 10 psia. Mixture ratio is
varied from 0.5 to 6.0, and the inlet propellant thermodynamic states
considered are gases at 500R, 200R, and the normal boiling points of
the prooellants (163R for 0, and 37R for H2) and liquids at their
normal boiling points. The impulse maxima at an expansion ratio of 50
are in the range of L65 seconds for full-shifting flow and 450 sec-
onds for full-frozen flow (propellants supplied at 200 R).

Performance - Effect of Propellant Inlet Conditions

The inlet thermodynamic state of the propellants has a direct effect
on performance inasmuch as the enthalpy (or temperature) level of the
reacted mixture is affected. Because the hydrogen has such a high
heat capacity (on a weight basis), the mix enthalpy is more sensitive
to the hydrogen inlet temperature than to the oxygen temperature.
Figure 13 illustrates this effect by showing the propellant mix
temperature at a mixture ratio of unity as a function of the hydrogen

temperature.
The first-order effect of the inlet temperature on performance is

illustrated in Figure 1, a plot of theoretical specific impulse as a func-
tion of mixture ratio at four inlet conditions. The imoulse is shown
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to be decreased with lowered inlet temperatures or enthalpy potential
of the propellants,

There are other, second-order effects of the inlet conditions on
performance; specifically the position of the performance peak with
mixture ratio, the degree of recombination at a given mixture ratio,
and water condensation characteristics. These will be discussed under
each individual topic.

Performance -~ Effect of Chamber Pressure

Chamber pressure has no significant effect on performance (< 2 seconds)
at the low mixture ratios (~ 2.0); whereas at higher mixture ratios,
the specific impulse is increased with increasing chamber pressure.
Figure 14 shows the difference in specific impulse between the 100 and
10 psia chamber pressure cases as a function of mixture ratio for both
full-shifting and full-frozen expansions, Significant chamber pressure
effects on performance only appear at mixture ratios greater than 2.0
for full-frozen flow and 4.5 for full-shifting flow. At a mixture ratio
of 2.5, the performance difference is less than 3 seconds for full-
frozen flow. The maximum difference is 18 seconds for full-frozen flow
at a mixture ratio of 6.0.

Performance - Effect of Mixture Ratio

Maximum specific impulse as shown in Figs. 1 through 12 occurs at a
mixture ratio between 2 and 3 for full-frozen flow and at about 3.5
for a shifting expansion. This is in contrast to density impulse
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(based on liquids at their normal boiling points) which maximizes at
a higher mixture ratio as shown in Fig. 15. However, the density
imoulse curve is fairly insensitive to mixture ratio over a quite

large range.

Operation of the thrust system at lower mixture ratios results in
lower combustion temperatures and, consequently, less severe cooling
requirements in the thrust chamber and nozzle. Thus, the question of
the degree of chemical recombination during expansion becomes extremely
important in determining the operating parameters of the system. Like-
wise, the relative importance of density imoulse and specific imoulse
for specific applications is also significant. This report will weigh
the soecific impulse characteristics as most important because:

1. most crycgenic applications are specific impulse oriented

(weight limited)

2. the density impulse is quite insensitive to mixture ratio.

Chemical Recombination Kineties

The oreviously presented data showed the importance of chemical recom-
bination to both the mixture ratio for maximum specific impulse and the
level of specific impulse achieved. Therefore, the estimation of the
recombination kinetic effects becomes important when designing and
evaluating the system. Such an estimation will also serve as a basis
for fluid dynamics calculations of the nozzle flow field and frictional

drag losses when estimating the system thrust performance.
The determination of the point at which the chemical composition freezes

during a given nozzle expansion case utilized an existing Rocketdvne

computer program based on a generalized Bray criteria. The approach
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utilized follows the method developed by L. C. Francicus and E. A.
Legberg (Ref. 1 ), a "partial equilibrium" concept wherein the freezing
point is established by eoualizing the rate of compositional change due
to pressure and temperature decay during expansion and the sum of the
three-body recombination reaction rates. The three-body reactions are
assumed to be the rate-limiting chemical step. Of the three signifi-

cant three-body reactions

H + H +«+ M H2 + M
H +OH + M —s H20 + M

O + H + M — OH + M

the second was assumed dominant, based on both the existing free radi-
cal concentrations and the heat of reaction. The freezing point calcu-
lation was based on the rate of this reaction. This is a conservaiive
approach in the sense that if other reaction rates are also important,

freezing will occur earlier in the expansion.

Two methods of defining the expansion geometry were considered for the
calculations,
(1) a specification of a contraction angle ¢« , an expansion angle
B, and the ratio of the radius connecting o{with B to the
throat radius (known as analytical method)
(2) a point-by-point contour specification in this case based on
four radii for expansion to the throat.
The second method is used when the chamber-to-throat region geometry is
somewhat complicated; however, if freezing occurs upstream of the first

point specified on the contour, the program will not give a solution.

The freezing point results are listed in Table 2. In all cases at the

10 psia chamber pressure level, the freezing point occurred at
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contraction ratios larger than would be utilized in a real thrustor.
The case listed in the table represents a severe case, the high mixture

ratio leads to a high temperature and relatively large concentrations
of free radicals. These conditions result in high recombination rates
(on a relative basis), but still the freezing point is at a contraction
ratio of approximately 15. Thus, full-frozen flow is predicted at the
10 psia chamber pressure level.

The predicted freezing point at a chamber pressure of 100 psia was
found to vary from contraction ratios greater than 15 for low mixture
ratios to just greater than 1 for mixture ratios of approximately 4.0.
At low mixture ratios of - 1.0, and & chamber pressure of 100 psia,

the expansion process can again be considered as completely frozen. At
the higher mixture ratio of 4.0, some chemical composition change will
occur. However, this has a fairly small effect on performance as shown in
Fig. 16 and 17. The direct effect on performance is indicated by the
impulse curve which only shows a divergence of the shifting and frozen
impulse curves at expansion area'ratios greater than approximately .
Shifting flow in the contraction section could have a second, indirect
effect on performance via a change in gas properties which would affect
the subsequent expansion process. The plots of gamma (Cp/cv) for
shifting flow in ¥Fig. 18 and 19 indicate that this effect is negligible,
however. Hence, for all practical purposes the expansion processes can
be considered as occurring in a full-frozen manner for the system under
consideration. The occurrence of aforeconcluded type of expansion has
a significant effect on the choice of the mixture ratio operating point
as shown in Fig. 1 - 12 and previously discussed. This is beneficial in
the sense that operation in the maximum frozen specific impulse range

of MK = 2 to 3 will result in lower combustion temperatures and less
severe oxidation atmospheres. Cooling and material requirements could

then be considerably less restrictive.
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Performance - Effect of Fxpansion Area Ratio

The deoendence ot the impulse performance cn expansion area ratio as
balanced against additional frictional drag loss is a key factor in
determining a nozzle design point, the others being weight and size
considerations. This dependence is graphically depicted in Figs, 20
through 23 for two chamber pressure levels and mixture ratios. Both
full-shifting and full-frozen performance values are depicted.
Performance becomes ocuite insensitive to area ratio at area ratios
erreater than 30:1, making detailed trade-off ouite necesséry prior to

a final application design.

The divergence of the performance curves (full-shifting from full-
frozen) at a mixture ratio of 1.0 and area ratios greater than
approximately 25:1 to 30:1 is caused by the theoretical condensation
of water in the full-shifting case, Conversely, no water condenses at
an area ratio of less than 50:1 for a mixture ratio of 2.5. 1In the
latter case, the divergence of the two curves is caused by recombi-

nation effects.

In any case, it is evident that area ratios greater than 50:1 would be
only marginally attractive, if at all, from an increased performance

standpoint.
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HELIUM DILUTTON

Propellant supplied to the RCS from the main vehicle tankage, one of
the two cases under consideration, may contain appreciable quantities
of helium diluent. The helium would be present as residual pressurant.
Deoending cn the method of pressurizing the tanks, normal boiloff and
venting will tend to reduce the quantity of helium present and thus

minimize the effect of the diluent.

Figures 24 through 35 show the effects of helium dilution of the
incoming propellants on theoretical specific impulse at the 10 psia
chamber pressure level. The comparisons are based on a definition of

mixture ratio as the ratio of weight flows with the diluent included

R = OXygen plus oxygen diluent
hydrogen plus hydrogen diluent

The dilution of the oxygen and to both propellants simultaneously
results in reduced specific impulse, with very little difference in
the performance between these two cases. The major effect is one of

removing a reactant species (02) for an inert one (He).

When the helium dilutes the hydrogen, at the 50 weight percent level,
specific impulse is nearly the same as the undiluted propellants at

low mixture ratios. At mixture ratios greater than 1.5 to 2.0, specific
impulse drops off severely. The latter is chiefly caused by the substi-
tution of the inert helium for reactive hydrogen above a mixture of
four (for 50% dilution). The effects of smaller degrees of hydrogen
dilution will be significant only at higher mixture ratios.
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CCMBUSTICN TEMPERATURE CHARACTERISTICS

The combustion temperature characteristics of the hydrogen-oxygen
propellant combination have significance in two areas, control of the
propellant mixture ratio fed to the catalyst bed and selection of a
thrustor design based on materials compatibility and feasible modes of
thrustor cooling. The former consideration is imposed because opresent
state-of-the-art catalysts for low temperature (100 to 200R) service
are limited to an approximate maximum operating temperature of 1500F.
This limit was defined in a previous NASA program (Ref. 2 ) as that
necessary to prevent damage to alumina substrate of the catalyst. Also,
a catalyst bed exit temverature of at least 1000F is necessary in those
engine designs which utilize the injection of additional oxygen down-
stream of the catalyst bed.

The effects of propellant inlet conditions and mixture ratio on
theoretical combustion temperature are shown in Figs. 36 and 37.

The 1500R temperature is seen to occur at mixture ratios from 0.75 to
1.25, depending on the inlet propellant temperature. The combustion
temperature varies from 3000 to LOOOR in the mixture ratio range from
2.0 to 3.0, corresponding to the maximum full-frozen flow specific
impulse. Operation in this range of temperature leads to a significant
reduction in the temperature environment over that experienced at the

more normal large engine operating point of MR =.+ 5,2 (temperature of
5000 to 5500R).

The addition of helium diluent to the propellants for the 10 psia
chamber pressure case can substantially change the combustion tempera-
ture as shown in Figs. 38 through 40 . The presence of 50% diluent in
the hydrogen is seen to raise the combustion temperature by approxi-
mately 700R at mixture ratios near 1.0. This is caused by the lower
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heat capacity of the helium as campared with the unreacted hydrogen it
replaces. The impulse effects of 50% dilution of the hydrogen showed
an almost negligible effect in this mixture ratio range, because of the
increased temperature is accampanied by a similar increase in molecular
weight. Since this increase is important to the reliable control of
the thrustor, the dependence of the temperature on the percentage of
helium dilution is shown in Fig. 41. Small amounts of helium are shown
to have relatively small effects on the temperature, Figure 41 also
shows a similar effect at a higher mixture ratio of 2,5. However, at

higher mixture ratios, the percentage temperature difference decreases
for two reasons;

(1) water absorbs a higher percentage of the energy
(2) the hydrogen is campletely consumed at a mixture ratio of
approximately 4.0 (for 50% dilution).

The effect of helium diluting the oxygen is one of removing combustable
oxygen with a resultant decrease in temperature. This was the cause
of the impulse degradation discussed above,

SUMMARY OF THEORETICAL PERFORMANCE CHARACTERISTICS

The low pressure hydrogen/oxygen performance characteristics differ
from those at high pressure in a significant manner. The low operat-
ing pressure leads to frozen expansion of the chamber gases at the
higher mixture ratios. This in turn results in a maximum specific
impulse over the mixture ratio range of 2.75 to 3.25 for a 100 psia
chamber pressure :}(specific impulse of -~ 475 seconds) and of 2.50 to
3.0 for a 10 psia chamber pressure (specific impulse of ~~L466 seconds).
These mixture ratios, as opposed to higher values found at higher chamber
pressures, result in substantially lowered combustion temperatures

in the range of 3500F to A4500F. Such temperatures present

a substantial reduction in the severity of the chamber envirorment.

27



m ROCKETIDYNE . A DIVISION OF NORTH AMERICAN AVIATION, INC.

The presence of helium diluent in the two propellants has a different
effect depending on the propellant which is contaminated. With helium
in the oxygen, the amount of combustible material in this fuel-rich
mixture is decreased. This lowers the combustion temperature and
specific impulse. With the hydrogen contaminated the combusticn
temperature is increased because of the lower heat capacity of the
helium as compared with hydrogen. However, the specific impulse is
changed only slightly because of a compensating effect of increased

molecular weight.
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ROCKETDYMNE . A DIVISION OF NORTH AMERICAN AVIATION., INC.

COMPONENT ANALYSIS - THRUSTOR

The thrustors in the subject cryogenic RCS must represent several
significant departures from current small engines. These unique fea-
tures include:
(1) Use of the cryogenic 0,-H, propellant combiration
(2) Utilization of packed beds of catalyst pellets to induce
reaction of the propellants
(3) Bipropellants fed as gases at chamber pressures of 100 and
10 psia.
The lack of existing design criteria and/or experience with such
engines made necessary an initial, analytical design evaluation effort
which included:
(1) Conceptual design evaluations at the 20 and 100 pound-thrust
levels and the two chamber pressures of interest
(2) Review and reconsideration of past experimental results from
catalytic bed studies and recently derived bed design cri-
teria with emphasis on extrapolation to low pressure
operation
(3) Consideration of injector-mixer designs for the introduction
and mixing of the bipropellant gases
(L) Evaluations of engine performance and overatine character-
istics
At the conclusion of these efforts, a single thrustor conceot was
chosen, in conjuncticn with the conditioner concept selection, for
further evaluation. Further analysis of the thrustor operation was
accomplished. A model was formulated and programmed for use on a digi-
tal computer. The resulting simulated thrustor was utilized to

determine expected operating characteristics and the effect of changing
key design variables.,
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The aforementioned technical efforts are discussed in this section.
This work is to serve as a basis for the remaining program efforts,
which are to include experimental evaluations of the thrustor concept
and comparisons of the experimental results with those predicted using
the simulated thrustor.

The basic design parameter and operating goals for the thrustor sub-
system were initially defined as:

Chamber Pressure level 10 and 100 psia
Thrust (each thrustor) 20 1b,

Expansion Area Ratio 50:1

Mixture Ratio (o/f) ' from 0.5 to 6.0
Duration 60 minutes
Minimum Impulse Rit 1 lbf - sec
Ignition Delay (maximum) 10 milliseconds
Mission Time 1 hour to 220 days

The theoretical performance analysis showed the most attractive mixture
ratio range to be from ~ 0.75 to ~~ 3.0, representing allowable packed
bed flow conditions to the maximum expected specific impulse point.
This effort will consider the mixture ratio range up to a value of 2.5,
The latter represents a condition with a combustion temperature of less
than LOOOF and with a negligible decrease of specific impulse as com-
pared with the full-frozen impulse maximum.

Two propellant feed temperatures, 200R and S00R, were selected as
representative for system comparison purposes. Previous studies at
relatively high pressures had indicated reliable ignition to 210R and be-
low (Ref. 3)., A temperature of 200 R was selected as reoresentative

of the minimum temperature to achieve reliable ignition. Further,
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the assumption that the temperature limits for ignition are not sig-
nificantly affected by pressure may not be true. This should not
prevent the relative comparisons among the system concepts.

The feed temperature of 500 R was selected because one of the condi-
tioner concepts, direct heating, must employ a temperature higher than
the melting point of water.

THRUSTOR CONCEPTUAL DESIGNS

Nozzle and Chamber Concepts

The normally utilized chamber and nozzle design concept features a
cylindrical chamber with either a bell or conical nozzle. Conical
nozzles, the most simple, offer relatively good performance. The bell
nozzle, a more complex contour, represents an improvement over conica.ll
nozzle performance and compactness. The basic thrustor dimensions
for the two chamber pressures (10 and 100 psia) and thrust levels

(20 and 100 lbf) of interest are given in Table 3 . Three of these
configurations are shown schematically in Figs.42,43 , and 44. The
sizes of the 100 psia thrustors are similar to the sizes of present-
day reaction control systems. However, the 10 psia engine are much
larger and may present vehicle packaging problems, especially at the
100 1lb-thrust level. To circumvent this disadvantage, advanced nozzle
configurations were considered. A number of isentropic plugs and
spike nozzles were sized. The resulting dimensions are shown in

Table 4 . A schematic of one such design, a 10 psia, 100 lb-thrust
chamber is shown in Fig. 45 . These designs are seen to be quite
attractive from a compactness standpoint.

In comparing the cone, bell, and plug nozzles sized for 20 pounds
thrust, 10 psia chamber pressure, and 50:1 exit area ratio, it can be
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concluded that the nlug nozzle would be less likely to present a
vehicle packaging integration problem since it is much more compact.
The geometrical advantages of the truncated plug are even greater at
the 100 pound-thrust, 10 psia level. Truncated plug nozzles with
design exit area ratios of 10 are shown for the 100 pound-thrust cases
to indicate compactness practicability. Assuming the smaller exit area

ratio reduces the theoretical specific by approximately 30 seconds,

but does result in substantially reduced engine sizes.

Conical Nozzle Design. The 17.5 degree half angle was chosen for the

conical nozzle design over the more conventional 15 degree half angle
to minimize flow field nonisentropiec shock phencmena which can occur
in high area ratio nozzles. Such phenomena are reported in Ref. 4
and may represent sizeable losses in performance. In fact, similar
phenomena were found to occur in the flow fields for the 17.5 degree
designs from the results of method of characteristic calculations.
However, in this case such phenomena, which are detected when charac-
teristic surfaces of the same family intersect, were found to occur
outside of the 50:1 design area ratio. Thus, the wall isentropic

pressure distributions for the current designs should not be affected.

Bell Nozzle Design. Experience has shown that the length of a 15

degree half angle conventional conical nozzle can be reduced 80%, and
ecuivalent or better performance can still be realized if a bell
nozzle of equivalent area ratio is used with an optimum contour as
based on the methods of Rao. Coordinates of a nominal Rao contour are
given in Table 5 for the 80% bell nozzles considered for 50:1 exit
area ratio applications herein. The Rao contour is termed nominal,

since it was calculated assuming a constant ratio of specific heats,
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7‘ = 1.3. Actually, for thrustor operations between the previously
mentioned mixture ratio range, 1.0 & MR S 2.5, one-dimensional frozen
and shifting equilibrium analyses indicate that ¥ may range from 1.2
to 1.4; however, the variation between the Rao contours within this

range should be negligible with respect of manufacturing tolerances.

Plug Nozzle Designs. Previous experiments with truncated spike (plug)
nozzles have shown that a substantial portion of the thrust theoretically
lost by truncation is recovered as a base pressure thrust on the plug
(Ref. 5). A 70 percent recovery of the thrust lost by truncation was
obtained with a 30:1 area ratio nozzle truncated from 6 to 33 percent

of its isentropic length. These results were utilized in preparing the
plug nozzle designs. Design contours for the plug nozzles considered
herein are presented in Tables 7 & 7. In Table 6 the contour corresponds
to an exit area ratio &= 50:1. In Table 7 the contour corresponds to

an exit area ratio €= 10:1. Again, the contours were calculated assuming
a value of &€= 1l.3. Regarding the contour variation over the thrustor
mixture ratio range, considerations similar to that applied for the bell
nozzle contour can be again applied. The contours in Tables 6 & 7 are
considered optimum since they were calculated by the method of charac-
teristics for axisymmetfic flow.

Catalyst Bed Design Concepts

The catalyst bed design concepts considered for cylindrical chambers
consist essentially of four basic types: (1) in-line bed, (2) in-line
bed with downstream injection, (3) anmular beds, and (4) pilot beds.
Each of these concepts is depicted in Fig., 46. The in-line bed con-
cept is the simplest and represents the design with the most experi-
mental background information. The temperature of the exit gas is
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limited by the temperature stability of the catalyst. Although low-
temperature active catalysts are limited to approximately 1500R, a
suitably designed admix of this catalyst with higher-temperature-stable
metal oxide catalysts may allow a more versatile use of the concept.
However , all of the propellant must pass through the bed which will

result in an excessive pressure drop.

The in-line bed with downstream oxygen injection is a variation of the
in-line concept, but with the advantage of an easily accomplished mix-
ture ratio and performance increase to optirmum values. At present only
limited data are available on the experimental performance of such a
concept. The annular bed conceot is a design with several advantages.
First, the pressure drop will be considerably less for the annular bed
than for the in-line bed. Second, it provides a means of protecting the
chamber walls with no peralty in performance. In terms of disad-
vantages, it requires a somewhat more complicated propellant manifold

design than for the conventional chamber.

A truncated spike nozzle recuires an annular engine, thereby presenting
a new bed design problem. Several of many possible bed design concepts
for such an engine are shown in Fig. 47. Since detailed experience
with such an engine concept at the conditions of interest does not
exist at present, it has not been afforded primary attention. Rather,
it is viewed as a logical growth extension. The related bed concepts
have not been treated in great detail., The first concept shown in

Fig. 47 , with the annular bed fed from central axis and with radial

downstream injection, has been used for general evaluation purposes.
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Injector-Mixer Concepts

In the basic hydrogen~-oxygen catalytic thrustor concept, the propel-
lants are oremixed and then flowed through a catalytic fixed-bed
reactor. Obtaining a uniform mixture is important; nonuniform mixtures
lead to lowered performance and, more importantly, local high mixture

ratio zones which could cause bed burnout and engine failure,

The injector mixer and mixing zone must be designed to promote homo-
geneous mixing of the propellants in as short a length as possible with
a minimum of pressure drop. As indicated later in this report, the
pressure inventory available for low-pressure engines is such that only
about 2 to 3 psi are available to achieve such mixing in this region of
the overall reactor. As far as the injector-mixer section of the
reactor is concerned, there does not exist any well-founded theory or
empirical results which provide for a clear-cut optimum choice to
accomplish the mixing of two unlike gaseous propellant streams under
conditions of low pressure drop.

Four general types of injector-mixers were considered and are shown
schematically in Figure 48, The first type, termed "conventional",
utilizes unlike impinging streams to utilize available pressure drop
followed by an open mixing zone of sufficient length to achieve a high
degree of mixing. The second type, "Diffusion Bed", has a diffusion
bed substituted for the open mixing zone. The bed is to promote the
turbulent flow of the propellants and thus, the mixing in a shorter
length. The third concept, "Swirler-Diffuser Bed", offers a change in
the impingement method from impinging streams to impinging sheets with
an opposing angular momentum. The jet pump-diffusion bed is aimed at
applications where hydrogen pressure drop is at a premium such as a

regeneratively cooled chamber operating at a 10 psia chamber pressure,
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THRUSTOR DESIGN CRITERIA

Injector-Mixer Design Criteria

Criteria for Fluid Impingement Design. Well-founded theoretical or

empirical relationships for the design of any of the injector-mixer
concepts for mixing two unlike gaseous propellant streams under condi-
tions of low-pressure do not exist at present. However, it is known

for liouid propellants that homogeneous mixture ratio distribution can
be more nearly made to occur when the momenta of impinging two streams
are properly adjusted. Such studies have been extensively carried out
by Rocketdyne Research (Ref. 6 through 9 ) and the Jet Propulsion
Laboratory (Ref. 10 through 12 ). A first analytical interpretation

of the mixing problem for gases also suggests that the momentum criteria
similar to those found in the above references, may be applicable to the
gaseous mixing problems.

In general, the optimum mixing for liquids occur for unlike doublets
when the following relationship is obeyed:

2
P11 Dy
——
P2 Vo Dy

= K, where K is close to 1.0 (1)

Since the stream momentum, M, is equal to the product of velocity head
and orifice area, A, and the area is proportional to the square of the
diameter, it can be shown that if Eq. 1 is satisfied with X equal to

1.0, the two stream momenta are related by:

2 .2
_’fl_..fl__‘.’lﬂl_._;z_ (2)
2
Mé fz v2 D2 2 .
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In terms of overall mixture ratio the relation may be reduced further
to

N N N
NN

,02D
A D

(3)

o

or in terms of mixture ratio

3 1/2
PO DO
= ’[ (_D——) :\ (&)
r \ D¢

For other elemental injector designs the results can be reduced to the

following:

two-~-on-two element

D 37} 1/2
M = |kt Fo ( °) (5)
Fr D¢

two-on-one element

/2
] /01(2*1 "1
" '[""TZT 2
four-on-one element
pl LA S m 1/2
" [“j 3 (Ti) ] M

In general, liquid propellant injector performance optimization, which

is a measure of mixing optimization is found to follow curves as shown

ch* /—\

Aﬂ‘/ﬁ?\;

below:
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Assuming that such criteria again apply here, there would be optimum
MI/MZ ratios for best mixing in a given mixing length. However,

because of the expanding nature of gases the results may not be nearly
as clear as for liquids. Further, criteria for determining the required

mixing length, even with an optimized injector, are not known.

Mixing Zone Criteria. Within the mixing zone, the final propellant

mixing must occur prior to the propellant mix entering the catalyst
bed. This final mixing is necessary to remove concentration inhomo-
gencities in the gas which could lead to flashback and performance
degradation. It has been observed in previous catalytic ignition pro-
gram efforts (Ref. 2, 3, 13, and 14)that occasionally flashback through
the catalyst bed to the injector-mixer may occur, resulting in both
catalyst bed and injector-mixer damage. In Ref. 2 it was hyvpothesized
that this condition could be prevented if the mean local velocities
exceeded the local mixture flame velocity. In Ref. 2 this hypothesis
was further analytically pursued to provide a basis for design. A
literature search showed the maximum observed turbulent and laminar
flame velocities for ambient temperature premixed Hz/o2 propellants at
various pressures to be best represented by the data shown in Fig. 49,
By methods presented in Ref. 2 these data were extrapolated to lower
environmental temperatures as shown in Fig.50. Design curves for the
sizing of this section with no auxiliary mixing zone additions are
shown in Fig. 51 and 52 for both 10- and 100-psia reactors with inlet
environmental temperatures of 200 and 500R. However, the experimental
proof of these criteria has not been demonstrated. As is seen from
these curves, the flashback abatement will be more of a problem for
higher pressures than at 10 psia. The flow areas in a typical 10 psia
reactor design are, in general, considerably smaller than the limiting
values presented in Fig.51.
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The addition of mixing devices to the zone between the injector face
and the catalyst bed offers a further improvement in flashback abate-
ment. Such devices as inert pellets, metal shot, screens, etc. greatly
increase the available surface for quenching as well as promote addi-

tional mixing of the gases.

Catalytic Bed Design Criteria

The correct design of the catalytic bed is a key factor in the success-
ful demonstration of an oxygen-hydrogen catalytic thrustor. Available
data on the catalytic ignition of these gaseous bipropellants were
reviewed in Ref. 2 and 3 . These and subsequently obtained data were
reviewed in the Task I effort with the purpose of presenting a design
summary for oxygen-hydrogen catalytic reactors in this report.

The primary design factors for applying the packed bed HZ/OZ catalytie
reactor to attitude control thrustors are associated with the following:
(1) catalyst bed sizing and flowrates, (2) catalyst temperature limita-
tions, (3) effects of catalyst sizing and shape, (4) effects of varying
catalytic chemical activity, and (5) resulting pressure drop effects

for a given catalytic reactor design. Each of these areas is discussed

below.

Catalyst Bed Sizing. The theoretical, and empirically substantiated
basis for sizing the catalytic bed for igniter purposes is presented in

Ref, 2 . The data which served as the basis for the model were
obtained at reactor conditions associated with chamber pressures above
100 psia. The model is based on oxygen diffusion to the catalytiec
surface as the rate-limiting step in the reaction process. The
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resulting theoretical required length of a catalytic reactor for H2/02
gaseous propellants using spherical pellets is given by

x = L.z BT 'F/-—°— pr2+3 (8)

- 13

. ‘ ;
\PT a \\a ,xuf }I/ i

In this relation it is seen that the bed length requirement is depend-
ent upon the mass rate velocity to the 0.L1l power and inversely to a
measure of the pellet size as similar to the 1.Ll power. In addition,
the average total pressure of the gases flowing in the bed enters the
relation inversely to the first power. However, the local density

enters in as a first-power direct effect.

In the original derivation (Ref. 2 ) the density and local total pres-
sure were included as variables in x, the distance along the bed. If
the two can be taken as appropriate local values, Eqe 8 can be
reduced to:

s . 0.kl
x = L.92 ( o ‘ Pr2/3
~ a ) (9)
Comparing the theoretical results to experimental data shows that the
relationship must be modified by an entrance length to

s 0.4l
x = xo + 2;92 ( ‘° ﬁ‘f> Pr2/3 (10)
. a a ) t f f

Catalytic activity enters the relationship in an inverse manner and is
given herein as A , For the 1/8-inch spherical MFSS and MFSA cata-
lysts found to be the best H2/02 catalyst available to date (Ref. 2 ),
xo is ~~0.3 inch. It is seen that the value of a, the surface area per
unit volume, also influences the length requirement in an inverse

manner, and the smaller the pellet size the less catalyst bed length is
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required. The 1/8-inch MFSA catalyst data of Ref. 2 have been exam-

ined in detail to determine the effective value of £ by comparing the

theoretical values of x with the experimental values. In this manner,
was determined to be - 0.147.

The overall reactor diameter is recommended to be such that

D
ﬁ% :> 8 (11)

to prevent fluid flow channeling in the reactor. Bed friction measure-
ments have confirmed this relationship for a large number of packed-
bed configurations used in the chemical processing industry, although
it has not been verified in the H2/O2 catalytic work. The bed length
requirements for H2/02 igniters using 1/8-inch spherical MFSS or MFSA
catalysts and satisfying Eq. 10 are given in Ref. 2 . The data in
this reference were obtained at pressures ranging from 70 to 150 psia
in a l-inch-diameter reactor. As such the data should be directly
applicable to IOO-psia thrustors using 1/8-inch MFSA or MFSS catalysts.

A more generalized design orocedure for both the 10- and 100-psia
thrustors may be developed by developing curves in terms of Go’ the
mass flowrate. This has been done for the cases of 1/8- and 1/16-inch
catalyst assuming that ~< for 1/16-inch catalysts is also 0.147. The
results are shown in Fig. 53 . 1In general, it is recommended that
extrapolation procedure be based on Eq. 10 ,

A catalyst development program (Ref. 15 ) recently completed by the
Shell Development Corporation has led to a model of ignition which
differs than that formulated above. The Shell effort was accomplished
in laboratory apparatus at a total pressure of 1hL.7 psia with the
hydrogen/oxygen combination diluﬁed with helium and the active specie
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partial pressures varied from approximately 0.5 to approximately 7 psia.
The resolution between these two modeling approaches was not within the scope

of this program, but differences in operating conditions (pressure
and flow velocities) for the two types of experiments are probably responsi-

ble, Further experimental work over a wide pressure range was necessary.

Catalyst Temperature Limitations. The currently available catalysts

recommended for Hz/oz ignition at low temperatures are MFSA and MFSS
1/8-inch spherical catalysts (Ref. 2 ). These catalysts are fuel-tyve
catalysts, and as such are best operated in fuel-rich service. Previous
experimental results have shown that these catalysts will operate at a
maximum temperature of 1500F corresponding to a mixture ratio of - -1:1
with low temperature propellants (200R) without undergoing damage. For
the admix concept presented above, a metal oxide catalyst will undoubt-
edly be necessary for use in the high temperature portions of the bed.
Although very little data exists in the literature on the application
of such catalysts to oxygen-hydrogen service, it is not expected that
an extremely high catalytic activity would be required. Rather, high
temperature durability would be requisite.

Catalyst Sizing and Shape Variations. In early 02-H2 catalytic work,
Rocketdyne determined that spherical catalyst pellets offered the most
repeatable ignition results. Further, based on analytical results pre-
sented above, the catalyst size would be as small as possible for mini-
mum bed length. However, until only recently the smallest available
MFSS- or MFSA-type catalysts were the 1/8-inch spheroids. A small
quantity of 1/16-inch catalyst was made available to Rocketdyne for in-
house studies. However, although the smaller catalyst provides a higher
surface area-volume relation, a, it also results in a higher pressure

drop for a given mass rate. This is not particularly critical at 100
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psia, but it is quite critical at 10 psia. A substantial body of data
is avajlable for the 1/8-inch material at the 100-psia range, but no
data exist at the 10-psia point. With the exception of the small amount
of 1/16-inch data gathered in in-house studies and used to semi-
quantitatively verify the scaling relationships, no data are available
for the 1/16-inch catalyst pellets.

Varying Catalytic Activity. It is known with the type of catalyst
being considered for this program, that the catalytic activity is

temperature dependent as follows:

S G exp(E/RT) (12)

This relation shows that the activity, which is a measure of conversion
efficiency, falls off at reduced temperature. Consequently, it is
expected that the length of the bed will be increased for a cold,

initial temperature propellant mix over that of an ambient propellant.

Previous work at Rocketdyne has not indicated a low temperature activity
limit on ignition. However, the low temperature results were obtained
at relatively high preignition pressures and an extrapolation of this

conclusion to low pressures may not be valid.

Pressure Drop. In this program, an extensive study of the pressure drop

characteristics of packed beds in which reaetion is occurring has been
carried out for both the 1/8-inéh catalyst results obtained in previous
programs and for the 1/16-inch catalyst results ocotained in recent in-
house experiménts. These results have been found to correlate quite
well with the Ergun equation:
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. - 3 -
LD / S >= 150 ————D(l d) + 175 (13)
G L \1 - ¢ ____©

l'.f

This expression can be rewritten for use in analyzing results for

reacting mixtures as

. - B G
(x) %x}f = 1150 (11) = ) .78 —- RT(x) (1)
Z_ /‘41. -

If the temperature distribution is known, and if the void fraction is
taken as. 0.31 for a random-packed bed, the pressure drop may be
obtained by numerical integration of Ea. 14 .

If the average density, /5 s In the bed is used, a series of approxi-
mate design curves may be derived to predict oressure drop in an H2/02
catalytic reactor bed. Such curves are given in Fig. 54 and 55 for
both the 10- and 100-psia cases.

Thrustor Response

The thrust response of the system to a demand signal is of prime
importance. The subject thrustors differ from present-day thrustors
chiefly by the inclusion of the catalytic bed and the dependence upon
a catalytic initiation of the non-hypergolic reaction of the two
propellants., These factors will be of prime importance in the reactor
response characteristics. The first step in modeling the thrustor
operational characteristics is an order of magnitude comparison with

the purpose of defining the rate limiting steps. This is presented
below,
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Catalytic Reactor Response Comparisons. Previous Rocketdyne Research

H2/02 catalytic reactor studies have shown that the response character-
istics of this type of reactor can be approximately determined by a
consideration of three factors in an independent manner: (1) chemical
response, (2) pneumatic response, and (3) thermal response. Each is

discussed below.

Consideration of the heterogeneous catalytic reaction process shows
that chemical reaction rates are primarily influenced by diffusion
rates. In the case of interest herein, H2 and 02 species diffuse to
the catalytic surface, and H20 species diffuse gway. Since diffusion
velocities are inversely proportional to the square root of the species
molecular weight, it is seen that the O2 species diffusion is the con-
trolling species in the reaction. Considering the diffusion to occur
over as many as a hundred mean free molecular paths, it is found that
the transit time is still less than a millisecond. Therefore, this
response time attributable to diffusion is negligible. Further,
experimental measurements of this type of response has shown it to

correspond to the above time scale (Ref. 2 ).

Paeumatic response is associated with the transient fluid buildup
within the catalytic reactor. The respcnse associated with this fill-
ing was theoretically examined in Ref. 2 by considering a control
volume containing a catalyst bed, mixing zone, and downstream volume
and a sonic filling orifice and a sonic expelling orifice. The time to
90 percent pressure buildup in this model of the catalytic reactor is

given by
T 2\ 1/2 |
fs0 =~ (I ) (15)
MT

g £
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when the L# is determined by considering the entire free volume of the

reactor. The value of ﬁg and Tg are average values in this analysis,

The major contributor to catalytic reactor response is associated with
the catalytic reactor bed thermal absorption characteristics. For a
given propellant mass rate and mixture ratio in the bed there is a
maximum chemical energy release rate corresponding to complete reaction.
The bed serves as a heat sink for this energy. An energy balance

around the bed assuming the bed to be at a uniform temperature

(infinite conductivity) gives:

Bed Energy Absorption = Energy Loss from Gas
aT "
Myop I ~ Wgy (Tpg = 1) (16)
with the boundary conditions
T(0) = T, (16-a)

T(t) = T (lb—b)

The solution to this system of equations is given by

T -T S Wee.
TEr = expi-gs t 1
Trg-To . Mbcb ) ( 7

The 90 percent response point is given by

To = 3000 s % 1114 d
90 ‘} R m 18econas (18)
g %
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These response results have been shown to be qualitative correct in a
number of studies (Refs. 2 and 3 ) and are suggested as reliable indi-
cators for predicting response. The generalized design curves are

shown in Figs.56 and 57 for the pneumatic and thermal response,
respectively. The given times are for optimized bed design, i.e.,
minimum length vs Go as predicted by the analysis of Ref, 2 ,

As comparison of Figs. 56 and 57 shows, the thermal response is the
predominant response characteristic to be considered., The times are
long when pulse-mecde operation is considered, and they emphasize the
desirability of minimizing heat loss in the catalytic reactor itself.
The effect of the large time constants if reflected primarily in
startup of the reactor. Once the reactor is hot the time constant is
not significant to the pulse-mode operation.

THRUSTOR PERFORMANCE AND OPERATION

Overall Thrustor Performance

The overall thrustor performance is best characterized by the value of
actual specific impulse delivered. This value is degraded from the
theoretical by a number of interacting, individual processes., However,
for present purposes, the inefficiencies will be assumed independent~-
a good assumption of small inefficiencies. The actual specific impulse
can then be written as

ISP ) \flc* “*theor. 7/(CF CFtheor (19)

where C¥ beor, 20d chheor. are the theoretical values of characteristic
exhaust velocity and thrust coefficient, respectively. The degradation
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effects of incomplete combustion are contained in the value of ci#
efficiency, o The thrust coefficient efficiency is assumed to express

the effects of the remainder of the impulse losses. Those included are:

1) kinetic losses

2) divergence

3) frictional drag

L) heat transfer losses

5) condensation effects

Such a procedure implicitly assumes that the nozzle contour and surfaces
are such that internal or oblique shock waves do not further reduce

the performance. The estimated efficiency factors for each of these
processes are applied to each concept are listed in Table XV, These
factors do not include losses associated with the conditioning system,
those were caused by feed back of hot gas for conditioning processes.

Combustion Efficiency. A very limited cuantity of data exist concern-

ing the combustion efficiency of packed bed reactors. The brief
experimental effort reported in Ref. 16 obtained the results shown

in Fig, 78 for in-line reactor configuration at a mixture ratio of 1.0.
It is expected that improved combustion performance can be obtained at
effort at optimization. However, for purposes of this evaluation, a
combustion efficiency (“zc*) of 98 percent was chosen, corresponding
to a characteristic chamber length, L¥* = 35 inches. This value was

assumed constant for all configurations evaluated,

It is recognized, however, that design criteria for downstream injec-
tion of additional oxygen have not been formulated. The achievement
of high combustion efficiencies with this type of chamber may require
the generation of detailed criteria for injection and mixing of the
additional oxidizer.
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Kinetic Losses. Kinetic losses arise from a nonequilibrium expansion

of the combustion chamber gases. As discussed in the Theoretical
Performance Section of this report, tﬁe oxygen-hydrogen combustion -
products should expand at the pressure levels of interest without
significant recombination occurring. The kinetic efficiencies which
evaluate the performance as compared with the equilibrium expansion

specific impulse, were calculated as:

I~ IspF

. sp
M
(K = ——T—— (20)
sp

where Isp and Ig, are the full-shifting and full-frozen values of
vacuum specific impulse to an expansion area ratio of 50:1. The only
difference in these values for the configurations of interest is one of
operating mixture ratio, since the full-shifting and full-frozen impulse
values are functions of mixture ratio.

Divergence. Divergence losses arise due to nonuniform nozzle flow as
depicted in the sketches below.

NONUNIFORM

UNIFORM r
B2AS SRSy ”,/’

Lines of Lines of
Constant Constanrt
Properties Properties
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The sum of the actual divergence and kinetic losses were computed from
the relation:

lp = —&—— (21)

in which CF is the vacuum thrust coefficient assuming full shifting
ecuilibrium flow and CFD is the corresponding value assuming nonuniform

axisymmetric flow. Values of CF were obtained in conjunction with the

theoretical performance results.

In the nonuniform full-frozen flow case, values of CFD were calculated
assuming axisymmetric, irrotational (or isentropic) flow at constant

4 . From the kinetic analysis it was found by examination of Y vari-
atiocns in the initial nozzle region over the design mixture ratio range
1.0 =2 (MR) = 2.5, that a representative value of ¥ = 1,3 with a mini-
mum loss in accuracy. With these assumptions, and for ¥ o= 1.3, the
flew fields of all thirteen configurations were calculated utilizing
existing Rocketdyne digital computer programs. The kinetic loss was
subtracted from the combined loss, leaving the effect of divergence
only.

Frictional Drag. Frictional drag losses occur from the viscous drag
forces on the engine wall opposing the thrust force. The degree of
impulse degradation caused by such a phenomenon was calculated assuming
a fully developed, axisymmetric turbulent boundary layer from the

chamber through the nozzle. The results of these calculations are
presented in Table 8 .
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Heat Transfer. The transfer of thermal energy from the combustion

gases and its subsequent rejection to the surroundings will cause
a loss in specific impulse performance. The magnitude of the loss
is dependent on the cooling method and the duty cycle imposed on
the engine. If regenerative cooling is used, the performance loss
is negligible. The employment of radiation cooling will mean a
larger, but still small loss, especially at the 10 psia chamber

pressure level.

To confirm conclusions concerning heat flux levels, the heat trans-
fer coefficients in the nozzle and chamber were estimated and heat
losses calculated for two representative cases. These were calcu-
lated on operating mixture ratio of 3.5 and chamber pressures of

10 and 100 psia. The method used to estimate the heat transfer
coefficients was similar to that of Flliot, Bartz, and Silver (Ref. 17)
<lots of the heat transfer coefficient along the chamber axis

for two cases are presented in Fig. 59 and 60.

The peak heat fluxes for the above causes were calculated based on
a wall temperature of 1000 F. The resulting values (assuming the
theoretical flame temperature of 4700 R) were 0.45 and 3.5 BTU/inZ-sec.
for the 10 and 100 psia cases, respectively. These values should be
approximately 10 to 13 percent lower at a mixture ratio of 2.5. The
heat transfer coefficient at the 10 psia pressure level was also used
to calculate steady-state temperatures for a radiation cooled wall.
These were in the range of 2000 F to 2500 F over the mixture ratio
range from 2.5 to 3.5 for a 100 percent combustion efficiency
theoretical flame temperature) and an emissivity of 1.0. This
indicates that radiation cooling is quite feasible.
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It is realized that the heat transfer coefficient calculations are
based on a mumber of idealized assumptions. Actual measurements of

the heat transfer characteristics are required for further
evaluation.

Condensation of Water in the Nozzle. The theoretical full-shifting
performance calculations were based on complete equilibrium in the
gas stream during nozzle expansion. This included the formation of
condensate when equilibrium considerations dictate, a process which
from a purely thermodynamic view will increase performance due to
the release of the enthalpy of condensation. However, the phySical
processes associated with the flow of two phases in the nozzle can
cause a loss in thrust performance. These losses can be viewed as
casued by an effective decrease in gas specific volume as mass is
transferred to the relatively dense liquid phase and be viscous kinetic »
energy dissapation due to drag force of the gas on the condensed
droplets. The severity of any of these effects is dependent on the
relative quantity of condensate formed, the position in the nozzle
at which condensation occurs, and the effective particle size of the
condensate.

Examination of the theoretical performance characteristics show conden-
sation to be predicted by equilibrium considerations only at large
expansion area ratios and fairly low mixture ratios for the configura-

tions under consideration. Because of this, the effects of condensation
are relatively minor. The effects of the condensation enthalpy release
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only affects an impulse gain on the order of 1.5 percent at a mixture
ratio of 1.,0. Likewise, it is expected that the frictional drag losses
caused by two phase flow will be of the same magnitude or smaller.
Since the actual, as opposed to the equilibrium, quantity of condensate
formed cannot be predetermined, the performance effects must be esti-
mated, For present purposes, the two above effects were assumed to
halance and a maximum loss calculated as vased on the equilibrium
removal of mass fram the gas to gero velocity condensate.

Performance Summary. In general, the results indicate that the

thrustor suvsystem should deliver specific impulse efficiencies in
the range from 90 to 95 percent of full shifting., This corresponds
to specific impulses in the 350 to 375 lby~sec per 1b for mixture
ratios of approximately L.0 and 425 lbf-sec per lbm for mixture ratios
of approximately 2.5.

CONCEPT SELECIION

Following the analysis efforts described above, it was necessary to
choose a casic concept for further study. A cylindrical chamber with

a conical nozzle, an in-line catalyst bed, and downstream injection

of oxygen were selected for the thrustor design. Selection of the
conical nozzle design over a bell design was based on ease of fabrication.
More advanced designs directed at a minimization of thrustor weight,

€. 8., truncated spike configurations, should be considered in future
programs, Selection of an operating chamber pressure in conjunction

with a conditioner subsystem concept resulted in a value of 10 psia.

The lack of existing data at this pressure level was the strongest thrustor-
oriented reason for such a choice. A mixture ratio of 2.5 (O/F) was
selected for the thrustor operation, Since the available low tempera-—
ture catalysts will only withstand the temperatures produced by

a mixture ratio of approximately unity, the additional axygen is to

be injected downstream of the catalyst bed, Predicted heat flux levels
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at the relatively low flame temperatures involved (- 4000 F) are
expected to be sufficiently low to allow radiation cooled engines.

SUMMARY OF THRUSTOR DESIGN AND ANALYSIS CONSIDERATIONS

Evaluation of thrustor design concepts resulted in the selection of
a cylindrical chamber with a conical nozzle, an in-line catalyst bed
subjected to propellant at an approximate mixture ratio (O/F) of 1,
and downstream injection of additional oxygen to raise the overall

. INC.

mixture ratio to 2.5, a value near the frozen specific impulse maximum.

The choice of operating chamber pressure made in conjunction with a
conditioner concept selection resulted in a 10 psia value, The chief
thrustor-oriented reason for such a choice was the lack of existing
technology at this pressure level. The combination of low chamber
pressure and a relatively low mixture is expected to result in steady-
state wall temperatures for a radiation-cooled thrustor of from 2000
to 2800 F,

The choice of a radiation cooled thrustor with no internal regenerative

heating of the incoming propellants resulted from the general objec-
tives of the experimental program. The inclusion of internal heat
transfer could only serve to decrease the response of the thrustor,
However, for those applications where quick response is irrelevant,
or of minor consideration, increased overall system impulse could be
obtained by partial regenerative heating of the propellants as is
discussed in a previous section.

Previous investigations at pressure levels of 100 to 250 psia revealed

that catalytic ignition could only be reliably obtained at inlet pro-
pellant temperatures sufficiently high to prevent oxygen freezing.
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This requires the temperatures of both propellants to be in excess of
approximately 115R. In addition, effective mixing of the two propel-
lants prior to catalytic reaction can best be guaranteed by maintain-
ing the mixed propellant temperature above the dew point of oxygen.
Further, flow control of both propellants in the thrustor can most
easily be maintained with gaseous propellants. Based on these consid-
erations a propellant feed temperature of 200 R was selected as the
design point for the experimental effort. It was recognized that with
the conditioner system concept utilized, lower overall system impulse
would result from increases in this temperature because an increasing

fraction of the propellant would be diverted for conditioning purposes.
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02/H2 ATTITUDE CONTROL CONICAL AND BELL NOZZLE DESIGNS

TABLE

3

Nomenclature
LB = bell nozzle length
@N- conical nozzle length
- cone half angle
Do - chamber diameter
Dy = nozzle throat diameter
De = nozzle exit diameter
' 3 F = thrust

Py = chamber pressure
€ = area ratio

Lon %

1
L |

l

-

REFERENCE DATA"

PRELIMINARY DIMENSIONS

(Ii) (nga) ‘_:i__ (ig) ?Eﬁ) (dzzgges) ?in) ?:n) QE:)
20 10 50 9.4 {11.42 | 17.5 | 3.00 1.19 | 8.la
100 10 50 || 20443 | 25.52 | 17.5 | 7.00 2.66 (18,78
20 100 50 2,92 | 3.66 | 17.5 |1.00 0.38 | 2.69
100 100 50 6.53 | 8.18 | 17.5 | 2.00 0.85 | 6,02
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TABLE 4

02H2 ATTITUDE CONTROL SPIKE NOZZLE DESIGNS

w
K . Nomenclature
& (4_)* - cowl lip slope
| 3 h™ - gap width
Ly h Ry - cowl lip radius
' R = base radius
? \ // Ly - isent;opic spike
eng
\\ / Lt - truncated spike
L \\ // | F - tﬁrust
P, = chamber pressure
\ / I‘\Exhaust Streamtube for
\‘|I R | | DesigneP\' _'n'f.r
-~ area ratio
| —e
REFERENCE DATA PRELIMINARY DIMENSIONS
F P Iy Ir n w | R R
() |(psfa)| € (%) | (n) |(n) Kdegrees) (¥n) | (in)
20 10 50 2460 | 2.46 0.0k 8Ll Le26 2.98
100 10 10 20,30 | 1.03 0.22 6lio7 Le39 3.07
20 100 50 7.60 | 0.76 0,01 8h.l 1,32 0.92
100 100 10 3.24 | 0032 0.07 6he7 1.38 0.97
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BELL. CONTOUR FOR 02/Hé ATTITUDE CONTROL ENGINES

TABLE §

X/R, Y/Rt X/F% /R, | X/R, Y/Rt

0.202 | 1.056| 2.010 2.187 | 5.953 | 4.057
0.205 | 1,058{ 2.149 | 2,267 | 6.315 | 4,194
0.208 | 1.060( 2.290 ]| 2.348 | 6.690 | 4,332
0.312 | 1,125 2,435 | 2.429 | 7.079 | 4.470
0.426 | 1,198 2.582 | 2.510 | 7.483 | 4.609
0.5%0 [ 1.271( 2.733 | 2.592 | 7.903 | 4.748
0.653 | 1.344] 2,886 | 2.673 | 8.341 | 4.888
0.767 | 1.418] 3.041 | 2.755 | 8.797 | 5.029
0.882 | 1.492| 3,199} 2.836 [ 9.273 {5.170
0.999 | 1.567| 3.344 | 2.909 |10.288 | 5.455
1.117 ) 1.642) 3,669} 3.070 |11.398 | 5,742
1.237 | 1.718] 3.978 | 3.218 |12.613 | 6.030
1.360 | 1.795] 4.292 | 3.362 |13.948 | 6.319
1.484 | 1.872 4.609 | 3.504 |15.417 | 6.606
1.612 | 1.950] 4.932| 3.643 |17.036 | 6.891
1.742 | 2.028] 5.262 | 3.782 [18.167 | 7.071
1.874 | 2.107] 5.602 | 3.919

Coordinate System
A Y/R,

Coordinates at
Nozzle Exit

Coordinates at G; = 8.7 degrees
Tangent Point tht = 18,167
Y = 7.0
T 69 = 30.94 degrees /Rt 7.071
X/Rt = 0.202
Ry Y/F% = 1.056
‘ — X /R
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TABLE &
PLUG CONTOUR FOR 02/Hé ATTITUDE CONTROL ENGINES,
(e = 50:1)

Mgl | e [ AR,
2.341 0.225 9.64 | -0.006 | 0.966 | 63.39
1.380 | 0.405 | 12.61 | -0.008 | 0.970 | 65.63
0.885 0.529 | 16.0% | -0.010 | 0.97% | 67.81
0.595 0.621 | 19.43 {-0.011 | 0.977 | 69.9%
0.413 0.691 | 22,69 |-0.012 | 0.980 | 72.02
0.293 0.74% | 25.90 | -0.013 | 0.983 | 74.03
0.216 0.787 | 29.01 | -0.01% | 0.985 | 75.99
0.154 0.820 | 32.05 | -0.01% | 0.987 | 77.88
0.113 0.848 | 34.99 |-0.014 | 0.989 | 79.70
0.083 0.870 | 37.89 {-0.015 | 0.991 | 81.46
0.061 0.888 | 40.72 [-0.015 | 0.993 | 83.13
0.044 0.903 | 43.48 |-0.015 { 0.994 | 84.73
0.031 0.916 | 46.17 | -0.015 | 0.996 | 86.23
0.021 0.927 | 48.80 | 00.015 | 0.997 | 87.62
0.01% 0.936 | 51.36 | -0.015 | 0.999 | 88.90
0.007 0.944 | 53.88 {-0.015 | 1.000 | 90.03
0.003 0.951 | 56.34 | -0.015 | 1.001 | 90.98

-0.001 0.957 { 58.75 |-0.015 | 1.002 | 91.68
-0.004 0.962 | 61.10
Coordinate System
‘YVhL Nozzle Lip Terminates at X/RL = 0,000

Y/nL

Coordinates of Plug Contour at X/ﬁL = 0.000

w

‘/'u)= 0.00

between 0.951 and 0.957
between 56.34 and 58.75 degrees

(+)X/RL
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TABLE 7

PLUG CONTOUR FOR 02/H2 ATTITUDE CONTROL ENGINES

(e = 10:1)

MR, | YR | MR YR |,

0.029 0.846 | 47.44
2,110 | 0.132 | 10.8%| 0.017 0.860 | 49.52
1.461 | 0.261 | 12.78 | 0.007 0.872 | 51.55
1.064 | 0.360 | 15.66 | -0.001 0.883 | 53.52
0.798 | 0.441 | 18.46 | -0.008 0.893 | 55.k4
0.609 | 0.509 [ 21.19 | -0.014 0.902 | 57.30
0.471 | 0.566 | 23.84 | -0.020 0.911 | 59.10
0.368 | 0.614 | 26.43 | -0.024 0.919 | 60.83
0.288 | 0.656 | 28.94 | -0.028 | 0.926 | 62.48
0.226 | 0.692 | 31.40 | -0.032 0.933 | 64.06
0.178 | 0.723 | 33.81 | -0.035 0.9%0 | 65.55
0.139 | 0.750 | 36.20 | -0.038 0.946 | 66.93
0.107 | 0.774 | 38.92 | -0.040 0.952 | 68.21
0.082 | 0.796 | %1.33|-0.042 0.958 | 69.34
0.061 | 0.815 | 43.23 | -0.045 0.965 | 70.28
0.0%% | 0.831 | 45.32 [ -0.048 0.973 | 70.98

Coordinate System
R%!

Nozzle Lip Terminates at X/R; = 0.000

Coordinates of Plug Contour at x/RL = 0,000

Y/R; = between 0.872 and 0.883
w between 51.55 and 53.52 degrees

/-w= 0.00 X
g LI ’I 4 /RL
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———p Hot Gas Products
H2

INLINE BED

——p Hot Gas Products

INLINE BED
WITH DOWNSTREAM INJECTION

ANNULAR BED

+» Hot Gas Products

PILOT BED
Figure 46. Catalyst Bed Design Concepts
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Figure 47. Truncated Svike Catalyst Bed Design Concepts
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Figure 48, Low Pressure Irdectf{SMixer Concepts
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Figure 49. Flame Velocity Data Available from Literature
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Figure 50. Flame Velocity Extrapolated Data %o 60R and
210R for Turbulent and Laminar Flames
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Fig.51. Maximum Reactor Bed Flow Area for Flashback Prevention as a
Function of Upstream Pressure in a 20 1bf. Thrustor
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Figure 52, Maximum Reactor Bed Flow Area as a Function of Upstream

Bed Pressure at 100 lby, Thrust Level to Prevent
Flashback for two Propellant Inlet Temperatures.
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Figure 53.Theoretical Minimum Reactor Bed Length Required
for Complete Reaction (H2/02) as a Function of
Superficial Mass Flux for two Catalyst Types
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Figure 54. Theoretical Pressure Drop Per Unit Length of a

Reactor Bed Carposed of MFSA-1/8 Catalyst As a
Function of Superficial Mass Flux for Nominal
Bed Pressures of 100 and 10 psia
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Tigure 55, Theoretical Pressure Drop Per Unit Length of a Reactor Bed

Composed of MFSA-1/16 Catalyst as a Function of Superficial
Mass Flux for Nominal Bed Pressures of 100 and 10 psia.
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Figure 56, Pneumatic filling constant to 95% steady state
Pressure for Various assumed Sizes of Reactor
and Steady State Temperatures
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Heat Transfer Coefficient, BTU/in®-sec-R

Design Parameters

Thrust = 20 pounds

Chamber Pressure = 10 psia
10_4 Throat Radius = 0.59 inches
=== e 17.5° Core Nozzle
80% Bell Nozale FEopeN
=&
10 “
Boundary layer £ =
= starts here E= = S=SS
/ —_——
I~
10 . auui
=10 -5 0 5 10 15 20
Ratio of the Axial Distance from Throat to the Throat Radius
Figure 59. Predicted Heat Transfer Coefficients for a 20 Pound-Thrust
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Hydrogen-Oxygen Engine with Two Nozzle Designs, an 80% Bell
Nozzle and a 17.5° Core Nozzle - 10 psia Chamber Pressure



Heat Transfer Coefficient, BTU/inz-sec-R

10~/ MDesim Parameters %
Thrust = 20 pounds

Chamber Pressure = 10 psia

X Throat Radius = 0.19 inches
E==== == :
EEESESS
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Figure 60. Predicted Heat Transfer Coefficients for a 20 Pound-Thrust
Hydrogen-Oxygen Engine with Two Nozzle Designs, an 80% Bell
Nozzle and a 17.5° Core Nozzle - 100 psia Chamber Pressure
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COMPONENT ANALYSIS~-CONDITIONER

INTRODUCTION

For reliable operation of the cryogenic RCS thrustors, the temperature

of the incaming propellants must be raised above a minimum value to

insure reliable catalytic reaction and the thermodynamic state (pressure,
quality and temperature) sufficiently controlled to allow reliable control of
the flow to the thrustors. The conditioner subsystem is included in

the cryogenic RCS to accomplish these tasks.

Several conditioning concepts were formulated and evaluated. These

are described below. The general conditioner design and effect on
performance is also discussed. This establishes a basis for analytical
evaluation and selection of a single concept for experimental
evaluation.

The conditioner concepts were to be compatible with two distinct types
of reaction control systems; a high pressure system (at ~~ 100 psia)
representative of a separate pressure-fed system and a low pressure
system (at ~~10 psia) representative of a system fed from the main

tankage of a vehicle with a pump-fed main propulsion system.

The propellant supply restraints placed on the conditioner subsystem
were established at the initiation of this program:
Hydrogen Thermodynamic State - 37R liquid to 500R gas, in

single or mixed phases

Oxygen Thermodynamic State - 163R liquid to 500R gas, in
single or mixed phases
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Propellant Composition ~ propellants contain O to 50
percent helium pressurant at
the low chamber pressure level,
undiluted propellant at the
high chamber pressure level.

Supply Pressures - 20 = 5 psia for 10 psia chamber
pressure, 175 £ 5 psia for 100
psia chamber pressure

124




"W‘ ROCKETDYMNE . A DIVISION OF NORTH AMERICAN AVIATION, INC.

General System Design Considerations

A general RCS design requires a conditioning subsystem which would
be utilized to increase the temperature and regulate the thermodynamic
state of the propellants. The conditioning would serve the following

two purposes, respectively:

1. Raising the temperature to a value which would guarantee
reliable catalytic ignition, and

2. Regulating the physical state of the propellants to a degree

which would insure positive flow control.

Schematically, the RCS might be represented as below:

| I

By e i

| |

| |

| |

| |

0 ! |

2 ] o i
From Tankage | Conditioner | Thrustor
Subsystem Subsystem

The propellant flows from the main tankage to a conditioner and then
to the RCS thrustors.
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The system, as schematically shown, is separated into two distinct sub-
systems. Implied in this separation is a corresponding separation of
control systems; the thrustor control system is distinct from that of
the conditioner.

Integrated Subsystems. The two subsystems could be integral instead as

shown in the above schematic. However, in such a case, the heat and
momentum (pressure loss) exchange processes in the conditioner would be
closely coupled with the thrustor itself which could make the thrustor
overation extremely sensitive to upstream variations. Further, a vary-
ing thermodynamic state of the inlet propellant would have a closely
coupled effect on the thrustor dynamics and operating levels.

Two solutions are thought to exist for the problems associated with

such an integral system:

1. Provide a fast response automatic control function within the
integral system which can cope with transient behavior typi-
cal of the start and shutdown phases of operation, and of

varying inlet propellant temperatures and densities.

2. Deliberately insure an overdamped system--one not designed
for fast response but with a sufficiently slow response to
insure operability utilizing a more normal control concept.

The second alternative ignores one of the prime objectives of the pro-
gram, that of providing for a moderately fast response thrust system
and so was not considered in detail for this program. However, such a
thrust system would appear highly feasible for such slow response appli-
cations as propellant settling.

The first alternative is thought quite difficult from both an evaluation

and a design standovoint. The close pneumatic couoling of the two
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subsystems leads to a feedback of the dynamic characteristics of the
thrustor into the conditioner. Thus, the conditicner and thrustor
functions would necessarily be Tinked by a fast resovonse control con-
cept. The incorporation of a provision for handling a wide variety of
propellant inlet conditions would add complexity. In any case, the
design and overability of such a system would depend in large part on
the dynamic and steady-state characteristics of the thrustor, and on

the details of the control systems and devices.

Separate Subsystem Approach. The distinct subsystem approach was

selected for this program for three primary reasons; (1) an uncertainty
in the thrustor and conditioner dymamic characteristics, (2) a lack in
availability of applicable control devices, and (3) a program goal more
general than a specific device approach. The dynamic characteristics
observed in this program can then serve as a basis tor the dezigr of

close-coupled systems.

The conditioning subsystem can accomplish a second task in addition to
supplying enthalpy to the propellants, one of smoothing prooellant
temnerature and density fluctuations to aid in system control. The
conditioner and thrustor functions in the general RCS concents examined
were separated by a surge volume (accumulator) included in the condi-
tioner subsystem. This provides a smoothing of variations in thermo-
dynamic state as well as a station for measuring tempera‘ture and
pressure. The accumilator serves to pneumatically decouple the condi-
tioning and thrust functions as well as provide a source of conditioned
prooellant upon demand. The former serves to separate the thrustor

response from the conditioner.
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Thermal Requirements

Conditioner Energy Source Considerations. The task of raising the

propellant temperature to given level to assure reliable catalytic action
is one of supplying energy. A minimum temperature has not been defined;
however, experience has shown LOX at 163R and GH, at 210R will give
reliable ignition. Conversely, hydrogen at 4OR leads to a freezing of
the oxygen and erratic catalytic reaction., A temperature of 200R was
chosen as representative of the minimum for catalyst reaction purposes.

A temperature of 500R was specified as a maximum for consideration.

The conditioning energy could be obtained from external electrical power
sources, radioisotope sources, thermal energy transfer from the vehicle,
or 02—H2 chemical reaction energy. Figure 61 shows the power requirements
for conditioning from the propellant normal boiling point to 200R and
500R. Electrical power sources were rejected in order to minimize system
interface power requirements.

Isotopic energy sources were considered and a summary is shown in Table 9.
Assuming a 100 percent conversion efficiency relatively heavy power source
weights are necessary for applications involving isotope shielding.

Isotope costs are high and the least expensive isotope shown in Table 9

has nearly the highest weight. For applications without shielding require-
ments and where half lives of less than six months are acceptable, Cm-2h2
and Pc-210 may be used as cost is not a major factor. These two isotopes
could also be extremely attractive for the small make up heat sources

(less than five watts) that might be required.

Thermal energy transfer from the vehicle was not considered for the

bulk of the energy supply since it is extremely dependent upon vehicle
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design. Also, it is doubtful that sufficient energy would be available

under high usage conditions.

The remaining energy source, hydrogen-oxygen combustion, was deemed
most appropriate for the subject program. This concept can provide
energy over a wide range of power levels and thus meet the rather wide
range of operating specifications on the system. Such an energy supply
concept utilizes propellant non-propulsively, which causes a reduced
specific impulse. However, this can be a relatively small reduction

with the proper system design.

Evaluation of H2:02 Combustion Energy for Conditioning. Propellant
conditioning was examined from the viewpoint of the energy required
to increase the temperature of the feed propellants, Two combina~
tions of propellant thermodynamic states were assumed; one of
liquids at the normal boiling points (37 and 163R for IH, and

LO2 respectively), and the second of gases at somewhat higher
temperatures (60 and 190R) reflecting a moderate thermal energy

input.

Propellant conditioning to thrustor inlet temperatures varying from

200 to 500R were considered to provide a realistic temperature excur-
sion. Because the energy requirements of the conditioning system are
highly dependent on engine mixture ratio, a range from 1.0 to 5.0 was
evaluated. To determine a minimum propellant consumption necessary

to supply the required energy, stoichiometric burning of the oxygen

and hydrogen was assumed. Two final conditions of the water were assumed
after energy exchange with the thrustor propellants; (1) a final tem-
perature of 500R with sufficiently 1low partial pressure to prevent
condensation or solidification, and (2) complete ice formation at a

final temperature equal to that of the thrustor propellant. Figures
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62 and 63 present the water formation requirements for the two con-
ditions. These requirements are based on overall system enthalpy
balances and do not explicitly consider any particular method of
energy exchange,

An alternative conditioner concept, which has received attention,
utilizes a pressure augmentation device for the low pressure RCS appli-
cation. There is, of course, a tradeoff between weight, voiume, and
complexity added by such a device and the benefits of reduced com-
ponent size and pneumatic response due to higher pressures. Such a
device also increases the pressure available for propellant mixing

at the injector-mixer in the thrustor. Reacted H, -0, mixtures were

2 2
the only power supplies considered as a driver for such a device,

Thermal Energy Transfer Concepts for Conditioning. Many different

conditioning systems which utilize transfer of the 02-82 combustion
energy can be envisioned. One is direct heating of the propellants

by cross bleeding small amounts of propellants and accomplishing the
reaction via a catalytic bed. In this case the chemical reaction
energy is released directly into each propellant stream. However,

in this case the conditioned temperatures must be raised to about 500 R

to insure against ice formation in the bed.

Another thermal concept is heat exchange of the propellants with hot
combustion (H2—02) gases produced by a catalytic gas generator. The
thermally depleted gases are then vented overboard. Two variations

of this method were investigated; one where the heat exchanger is kept
at operational temperature at all times, and a second where the heat
exchanger is allowed to cool between energy transfer demands. The

latter will necessarily have a slower response.
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CONCEPTUAL DESIGNS

Subsystem Concepts

The four subsystems considered in the initial comparison, the direct
heating and the three heat exchanger conceots, are shown schematically
in Figs. 64 through 67. It is emphasized that these concepts are
directed for utilization in a general type of application. Use of a
cryogenic RCS in certain specific applications, such as a stage settling
engine system running only under steady-state conditions, should not
require such a general approach. Under such conditions, where response
is not critical, a more integrated conditioner-thrustor will be more
optimum.

Direct Heating Concept. A schematic representation of the direct heat-
ing subsystem is shown in Fig. 64. This conceptual subsystem is oper-

ated as follows: When the accumulator pressure transducer senses

a low pressure in the accumulator, the main propellant valves are
opened, allowing the propellants to flow through the catalyst beds

into the accumulators. The cross-feed solenoid valves are actuated
permitting oxygen to flow into the hydrogen catalyst bed (or hydrogen
into the oxygen bed), react with the hydrogen, and increase the hydro-
gen temperature to SO0R. A feedback of the hydrogen temperature can be .
utilized to control the quantity of oxygen cross-fed to the catalyst
bed, thus providing a measure of control on this temperature. A simi-
lar control would be utilized on the oxidizer side.

The propellant feedback must be accomplished from a lower total pressure

condition to a greater one. This could be accomplished with the use of

a venturi-type device to lower the static pressure of the main propellant
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stream. Thus, on the hydrogen side of the conditioner, the hydrogen
would be fed through a venturi and oxygen bled in the venturi throat.
It is noted that the operation of such a system is quite difficult from

a control dynamics standpoint.

Conventional Heat Exchanger Concept. The conventional (steady-state)

heat exchanger subsystem is shown schematically in Fig. 65. Operation
of this subsystem begins when the accumulator pressure transducer
senses a low pressure. When the accumulator pressure is too low, the
main propellant valve and the cross-feed valves are activated,

adding additional conditioned propellant to the accumulator, If

the pressure is too high, the relief valve opens, decreasing the
accumulator pressure. The gas generator feeds are obtained from the
accumulators to ensure positive control of the mixture ratio and,
therefore, the generator gas temperature. Thermostats are provided to
sense the tube temperature and prevent tube burnout during the system
start-up prior to the point where fully conditioned propellants exist
in the accumulators.

Preliminary estimates of the response times prevailing in the heat
exchanger system show that the thermal response of the exchanger wall
is controlling and is on the order of 1 second for 0.020-inch stainless
steel walls., Since the system sizing is a function of response time,

methods of decreasing the response times were investigated.

The thermal response time of the conventional heat exchanger system can
be approximated as

Co Pt ELGC -Einit (22)

g Trec - Tfinal
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Several methods of decreasing the system response time are available.
1. The use of different tube materials--however, substitution of
beryllium or copper for stainless steel will increase the

response time approximately 18% and 7%, respectively.

2. The tube thickness can be halved to 0,010 inches, halving the

response time,

3. The hot gas film coefficient can be increased by increasing

the allowable pressure drop.

L. Both the hot gas film coefficient and the propellant side
film coefficient (the temperature term is a function of both
film coefficients) can be increased by increasing the allow-
able pressure drop. The strong dependance of response time
on pressure drop is shown in Fig. 68, which also illustrates
the desirability of investigating a pressure augmented system.

5. The thermal response term can be eliminated entirely by keep-
ing the heat exchanger tubes at operational temperatures at
all times,

Methods 1 and 2 do not reduce the response time to a sufficient degree

to result in what can be considered a fast response system. Therefore,

concepts embodying the remaining methods were investigated.

Pressure-Augmented Heat Exchanger Concept. A schematic representation

of a pressure-augmented heat exchanger system is shown in Fig. 66 along
with a nominal pressure profile. This system utilizes a pressure aug-
menting device to increase the system response times, thereby reducing
the accumulator weights and volumes. Additionally, the component
weights decrease due to the larger available pressure drop. Both of the
propellant pumps can operate off a single prime mover. The pump power
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requirements are presented in Fig. 69 as a function of pressure ratio

and pump efficiency. Operation of this system is identical to the
conventional heat exchanger system, with the exception of an additional
cortrol loop to operate the pumps and prime mover.

Hot-Tube Heat Exchanger Concept. Figure 67 is a schematic representa-

tion of a hot-tube heat exchanger. During both pulse mode and steady-
state operation this systems'! operational characteristic is identical

to that of the conventional heat exchanger previously described. During
any inactive period, however, an additional control loop senses the

tube temperature and activates the catalytic gas generators when the
tube temperature drops below a predetermined minimum. A check valve

and solenoid vent valve are provided to vent the propellant to space
prior to activation of control loop. This venting subsystem pre-

vents overheating of the propellant stored in the exchanger during the

conditioners inactive period and may not be required if recirculation
effects are kept to a minimum.

The advantage of rapid response for the hot-tube heat exchanger over the
conventional exchanger concept is only gained at the expense of a propel-
lant comsumption necessary to supply the enthalpy to balance heat losses.
To find the resulting missions, an optimization of shell and tube exchangers

was accomplished and propellant consumption calculated for various insula-
tion thicknesses.

The results for a 220 day mission are presented in Fig. 70 and show that
the propellant consumption can be reduced to a 20 to 30 pound level. The
resulting tube wall temperatures were reduced to the 1000 to 120CR level
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from approximately 1800R for an increase in exchange area of 40 to 60 per-
cent. The temperature optimization curves shown in rig. 71 indicate the
sensitivity of the heat loss to both insulation thickness and maximum tube
temperature. The high temperature, high vacuum insulation used in the an-

alysis, Min K 2000, is a bonded material reinforced with fibrous media
(k =~0.02 BTU/hr-ft-R) and is commerically available.

Subsystem Design

Subsystem Design Assumptions. A number of assumptions are necessary in

sizing the subject subsystems due to the general nature of the operat-
ing modes. All oxygen side camponents were sized based on the worst
possible helium dilution case (50 weight percent in each propellant)
while the hydrogen side components were sized for pure hydrogen. This

is the worst condition experienced by each of the components.

The accumulator tanks were sized to provide propellant flow to operate
the thrustor subsystem for a time period five times larger than the
response time of the conditioner. Such an initial sizing was assumed
to insure against pneumatic coupling of the two subsystems as well as
to separate the thrustor response from that of the conditioner. Hence,

the accumulator size is directly proportional to the response of each
conditioner subsystem.

The individual components are based on state-of-the-art design as
nearly as possible. It is noted that the low-pressure components do
represent a fairly large departure in terms of volumetric requirements.
In this case the resultant sizes and weights represent a best extrapo-~

lation of Rocketdyne experience to the subject requirements.

Use of a single, catalytically ignited gas generator to operate both

heat exchangers is not considered feasible because of the need for
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high-temperature solencid valves downstream of the gas generator.
Similarly, the use of a single heat exchanger divided into two parts
(one for each propellant) operating with one gas generator would pre-
sent a complex controls problem and will prevent independent operation
of each propellant loop. The feasibility of using conditioned hydrogen
to condition the oxygen was also investigated. This concept, if feasi-
tle, would eliminate the need for the oxygen side catalytic gas generator
and the attendant valves. Low log mean temperature differences and low
pressure drop recuirements when operating with main tank propellants
dictate an exchanger area requirement of approximately 5 ft2 (MR=2.5).
The relatively large area requirement coupled with pressure starvation

considerations eliminate this conditioning method from further

consideration.

The effects of thermal energy transfer from the gas generators, heat

exchangers, and accumulators were ignored during the preliminary evalu-
ations. Possible transfer rates and their effect on design and ovperation
were deemed of secondary importance in this phase and relegated to a

follow-up effort after the subsystem evaluation had been essentially
comnleted.

Use of Pressure Regulators. The conceptual designs prepared for the

initial concept comparisons do not include pressure regulators.
Instead, on-off control with a pressure relief valve to prevent accumu-
lator overpressure was utilized. The exclusion of regulators was made
because they are relatively heavy and have a relatively low reliability
as compared with the other system components. Weight penalties associ-
ated with the use of regulators are shown in Table 10.
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The on-off ccntrol system design utilizes a pressure switch to energize
and de-energize the main propellant valve in the conditicner, thus
maintaining a relatively constant thrustor inlet pressure. The relief

valve functions should any excessive pressure occur.

A more definitive analysis of the necessary between control system
requirements was made follcwing this initial comparison and is described
below. The results do not change the relative comparison between the

conditioner concepts, since all of the system concepts are affected in

the same manner.

Subsystem Simplification. As discussed above, the provellant ccndi-

tioning subsystem has twomajor objectives; (1) specitication of the
oropellant thermodynamic state as fed to the thrustor for flowrate ccn-
trcl, and (2) maintenance of a hydrogen temperature which is above the
minimum compatible with the thrustor catalytic bed. The latter requires
only the hydrogen be conditioned, which results in a considerably less
complex conditioner. However, such a subsystem is not applicable if
the thermodynamic state of the oxygen fed to the RCS is allowed to

vary.

It is noted that in many applications where low-pressure boilcff might
be utilized in the subject propulsion system, the oxygen boiloff rates
are substantially below those of the hydrogen. In these cases it may
be feasible to utilize the positive expulsion device in the oxygen tank
to ensure a liquid feed and to simplify the conditioner subsystem by
utilizing only the single hydrogen conditioner. It is realized that
such a simplification is entirely dependent on the mission and vehicle

design.
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SYSTEM PERFURMANCE

The details of component design and sysiem performance analysis are dependent
on material and energy relationships within the system. Material and energy
balances were made to establish a basis for these tasks. These were accom-
plished for the hot-tube heat exchanger system. As discussed below, this
conditioning concept was selected for experimental evaluation and demon-
stration. Further, the performance for the direct heating concept can be

calculated indevendently without detailed material and energy balances.

lMaterial and Energy Balances for Hot-Tube

Heat Exc r Concept

Tne hot-tube heat exchanger concept utilizes hydrogen-oxygen combustion to
supply thermal energy for increasing the temperature of the feed propellants.
To accomplish ‘this,a portion of the propellant flow to the thrustor must
be diverted to the conditioning system for combustion and indirect heat
transfer with the inlet propellants. The exact amount diverted can only
be determined after the thrustor mixture ratio and thrust are fixed,and
such conditioner parameters as the gas generator mixture ratio, heat
exchanger hot-gas outlet temperature, and propellant inlet quality are
fixed. Six sets of important parameters were investigated and the results

are summarized in Tables 11 throughl? .

The initial set of nominal parameters and calculated heat and material
flows are presented as Case I in Table 11 . The important parameters

for this case are:

1. Saturated liquid propellant at the conditioner inlet, thus giv-

ing the maximum heat and flow loads

2. Theoretical optimum thrustor mixture ratio of 2.5 and 20 pounds

of thrust
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3. Gas generator mixture ratio set at 1.32 with injection of 02
downstream of the catalyst bed to produce a 2500 R combustion

temperature

4. Propellant conditioning to 200 R

Under these conditions, 9.0 percent of the total flow was diverted to the
conditioner system where the calculated heat load for the
is 3.85 and 10.1 Btu/sec, respectively.

2 and H2 gystems

An alternative set of operating conditions was also used for analysis. The
gas generator mixture ratio was reduced to 1.0 which allows an in-line bed
design without downstream injection of additional oxygen. Also, the possibi-
lity of a heat exchanger tube burnout is reduced, thus improving system
reliability. Comparison of this second set of conditions (Case II) with

Case I reveals the deaign change causes the percent diverted flow and the

H, heat exchanger heat load to increase‘only slightly, thus negligibly

2
affecting the heat exchanger and gas generator designs,

Case III illustrates steady-state conditions for saturated vapor inlet
propellants. Under these conditions, the O2 heat load is reduced to
approximately 7 percent of the maximum heat load while that for H2 is

65 percent., The net effect is to half the percent of diverted flow.

Material and energy balances were also prepared for conditioning to highér
temperatures, 500 and 400 R (Cases IV, V, and VI in Table ll). Such a

change in operating conditions causes a very large increase in the percentage
of flow diverted to the gas generators and on the heat load on the hydrogen
heat exchanger.
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The effect of conditioned temperature level on percent of flow diverted is
illustrated in Fig. 72 . The lower line represents the theoretical minimum
required flow when the gas generators are operated at stoichiometric condi-
tions. The large difference in these two curves is caused by the extra
fuel flowrate required to cool the indirect combustion products to 2000 F

(a safe-operating temperature for stainless steel) and to the large incresase
in the heat load for the HZ heat exchanger with conditioned temperature.

Conditioner Performance. A detailed analysis of those cases presented in
the previous section was made from & systems performance viewpoint. This
procedure is illustrated by the example shown in Table 14 for the original
nominal design, Case II. First, the theoretical thrust specific impulse
was determined as a function of the conditioner outlet temperature. The
most efficient system is & conditioner concept which mixes the combustion
products directly with the propellants to be conditicned with no removal

of the water formed.

The next most efficient system is a stoichiometric or direct-mixing system
having a water removal mechanism. The conditioner percent of total flow
vs conditioner outlet temperature is presented in ¥ig. 73 . When the
theoretical thrustor specific impulse for 200 R propellants is multiplied
by percent of flow to the thrustor, the theoretical system efficiency is
obtained. The net loss of 9 seconds specific impulse can be attributed to

removing the water.,

In the case of a single-stage combustion conditioner system, the system
specific impulse is further reduced by 30 seconds because of the additional
amount of hydrogen required to cool the combustion temperature to 2000 F
(Fig. 73 ).
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The system specific impulse is further reduced by thrustor inefficiencies
to approximately 367 seconds from the original 440 seconds. Thus, the
total loss can be broken down into a 9-second HéO removal loss, a 30-second

single-stage combustion loss, and other uncontrollable losses of 34 seconds.

A plot of theoretical and actual system performance for various conditioner
outlet temperatures is presented in Fig. 73 . As the conditioner outlet
temperature is increased to give reliable catalytic ignition, the specific

impulse loss attributed to single-stage combustion increases markedly.

Two methods for efficiency improvement are: (1) more efficient combustion,
and/or (2) injection of the conditioner hot-gas stream into the thrustor

chamber. The latter was deemed unsatisfactory for pulse-mode operation.

The former method of increasing the combustion efficiency was analytically
investigated. This method utilizes a series of indirect heat-exchange stages
at an overall stoichiometric ratio although the individual stages are
operated near a mixture ratio of 0.5 to 1.0. Thus,the efficiency of the
indirect system can be made to approach the direct system without the
inherent water removal problems associated with the direct system. Such

a multistaged reactor has already been reported (Ref. 18 ), and could result
in a saving of 8 to 75 1bm of H2 per hour for steady-state operation and

an increase in specific impulse of from 30 to 83 seconds.

- The overall system specific impulse can also be improved markedly for
several applications by incorporating design changes specific to each
application. For example, an attitude control system with a propulsion
requirement of small impulse bits spread regularly over a long time period

might utilize other emergy sources in conjunction with energy storage in
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the heat exchanger. A low-power source such as solar radiation might be
feasible for such an application. Also, the design for a steady-state
settling engine usage might include the regenerative heating of the pro-
pellant in the thrustor, thus reducing or eliminating the conditioner hot-

gas flow requirements.

COMPrONENT DESIGN

The component designs for the hot-tube heat exchanger subsystem were con-
sidered in detail, particularly the heat exchanger. This was because

as discussed below, the hot-tube heat exchanger concept was selected for
experimental evaluation. Conversely, the component designs associated
with the other subsystem concepts were only considered in a fairly general

manner.

Combined Heat Exchanger and Gas Generator

A flight-type conceptual design for a combined heat exchanger and gas
generator is shown in Fig. 74 . In this design, an annular heat exchanger
encloses the gas generator unit. A helical coil of tubing for the hot gas
is positioned in the annular space. The cold fluid is to flow in the
annulus. The design was selected for the advantages in packaging, and
simplicity of fabrication. Also, the nature of the flow path for the cold
fluid as a series of restrictions was thought to 2id in damping flowing

instabilities due to boiling.

~ Heat Exchanger Design

The basic equation used to size the neat exchangers was:

Q=14 . T (23)
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SYSTEM CONTROL CONSIDERATIONS

The thrustor catalyst bed temperature is sensitive to upstream condi-
tions, particularly the difference between the upstream pressures in
the accumulators. The analysis of this sensitivity is described in the
Systems Analysis and Simulation section. To assure reliability and

controlled operation, pressure and temperature control and/or equalizing

devices must be included in the conditioner subsystem.

Pressure Re ation and alization

Control of upstream pressure, particularly of the difference between
accumulator pressures, is a key factor in system operation. Pressure
regulators were initially considered and discarded in favor of a lighter,
more reliable pressure relief valve and an on-off controlled main valve.
However, as a result of theoretical analyses of control limits, pressure
regulators were considered as a method of eliminating catalyst bed
temperature fluctuations. The basic components common to each scheme
includes a heat exchanger, hot-gas generator, an accumulator, and the

main valve for the thrustor.

In addition to the use of pressure regulating and following devices
for maintaining pressure control, bellows and bladders were also evaluated

on a preliminary basis for use in equalizing pressure between accumulators.

Method A: No Pressure Equalizing System. This represents the initial
control scheme proposed. The system concept was based on dividing the
conditioner system into individual components and maximjzing the per-
formance of each component. A schematic of the system is shown in
Fig. 67. The principal control loops are as follows.
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1. Hot-tube temperature control in the heat exchanger--This loop
controls both the hydrogen and oxygen flow to the gas gener-
ator during the coast modes of the vehicle. The tubes are
kept hot to circumvent the relatively long time (~v2 to S
seconds) needed to heat the tubes to steady-state conditions.
An automatic reset capability of the reference temperature is
included to allow for variations in the quality of the propel-
lants delivered from the main tanks. The reference point is
determined prior to closing the main thrustor valve and is
maintained through the coast period.

2. Accumulator temperature control--When the hot-tube temperature
contfol is nullified (during thrustor operation) the accumu-
lator temperature controls the flow of hydrogen and oxygen to

the gas generator.

3. Accumulator pressure control--The accumulator pressure control
causes the tank valve to open at a specified low pressure and
close at the nominal accumilator pressure. If the accumulator
pressure exceeds the nominal value, the pressure relief valve

will open to relieve the overpressure.

Four valves and three principal control loops are used. A conceivable
problem exists in the pressure controlling device for the accumulator.
An oscillation could be established between the pressure relief valve
and the tank valve although, if significant, an increase in accumulator
volume will eliminate the oscillation. This oscillation cculd develop
during the conditioning cycle, from pressure perturbations caused by
liquid slugging in the heat exchanger. In addition, the pressure in
the fuel accumulator may cycle out of phase with the cxidizer accumu-

lator pressure. Another problem is in sizing an cffective orifice for
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where

1 (24)

i_ 1, .2
u b h

g
The hot gas heat transfer coefficients were calculated using the following
correlation obtained from Ref. 19 :
e'\.loa Pro.33

Mu = 0.023 R (25)

where fluid properties are evaluated at the film condition.

The heat transfer coefficients on the propellant side were calculated using
a more complicated procedure. For boiling hydrogen, the previous equation
(Eq. 25 ) was used to calculate a thneoretical Nusselt Number, which was

then modified using the Kartinelli procedure (kef. 20 and 21 ):

(),

M

. = 0.611 + 1.93X, . (26-2a)

where the Martinelli parameter is defined as:

. .9 (0.1 577 0.5
X,, = ["_1 Jtey e | (26-b)
W Le /2 A
g - g L A

and (Nu)t and (Nu)e are the theoretical single phase and experimental two
phase heat transfer coefficients, respectively. The Reynolds Number as

applied in Bq. 25 for two phase flow is defined as:

Re = vD for 0.05 = x< 0.95 (27)

X l-x

143




Emﬁ!; ROCKETDYNE . A DIVISION OF NORTH AMERICAN AVIATION, K INC

The heat transfer coefficients for superheated hydrozen flowing over tubes

was calculated with the following equation:

-
fu = b Prl/ 3 [Do Caz| B (28)

r

The constants b and n were determined from the data of Griwson (Ref. 22 )

as 0.348 and 0.592, respectively. These velues were selected as theoreti-
cally maxiwizing the heat flux per unit axial length and are compatitvle
with a longitudinal pitch of 1.25.

The heat transfer coefficients for the oxygen propellant were calculated

using the procedure outlined above.

The pressure drop on the shell side tube was obtained from Eq. 29-a which

linearly sums the friction losses and acceleration losses:

R G 2 Y Aht. l o
P= _mux ‘vz-vl+-2—f I—“& Vb y
g . uin .

Tiie friction factor for flow inside helical tubes was corrected using
Ege. 29~b:

D 4
i* = Yi + 3.5 Efﬁkg- b4 (29-b}

helix
The pressure-drop velues ubtained from Hg. 29-~a were increased by addaing
the exit and entrance losses. The results revealed a predicted propellaut
pressure drop of 1 psi and & hot-gas pressure drop of B psi. bBoth of
these estimated pressure drops were consistent with the conditiorer systew
pressure profiles detailed in Fig. 67 «
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the gasecus propellant tank valve. The specific volume of the propel-
lant can vary considerably because of all-liquid to all-gas transitions
as well as possible helium content in the propellant. Consequently,
the flowrate of propellant delivered to the heat exchanger could vary

over a large range for a fixed valve orifice area.

Method B: Pressure Regulator. A possible way to circumvent the prob-
lems that would be incurred with Method A is to use a pressure regu-

lator in place of the main valve.

p—

Fram To
Vehicle Main
ohis W

Valve

Hot
Overboard Gas

The regulator would take its reference point from the accumulator which
contains propellant entirely in a gaseous state. The need for a pres-
sure relief valve would be eliminated for control purposes, although a
relief valve could be employed as a safety device. The accumulator is
ccnservatively sized such that the regulator does not have to function
for every short (-.50 millisecond) pulse of the thrustor. The fuel-
side regulator deadband would be matched with the oxidizer regulator
such that the pressure differential between the accumulators weould at
no time exceed a set value. Based on control analyses discussed in

another section, 1 psi appears to be a reasonable deadband.

A difficulty could arise during the coast mode. Even though the regu-~

lator is closed and the accumulator topped off, the gas remaining in the
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heat exchanger is continuously being heated by the hot tubes. This gas
will affect the accumulator state by either conductive heat transfer or
pressure gradient mass flow. An estimate will be made of the gas
temperature and pressure increase in the accumulator. The relative
sizes of the heat exchanger and the accumulator are again important.
The larger the accumulator the smaller the pressure flow effects during
the coast mode. Likewise, the longer the conduction path, the smaller
the conductive heat transfer effects will be. An attenuating effect
evolves from keeping the heat exchanger tubes and the gas generator at
an elevated temperature. This requires an intermittent flow of condi-

tioned propellant from the accumulator even during the coast mode.

Another possible problem arises from the two-phase flow conditions in
the heat exchanger which can lead to pressure drop and flowrate fluctu-
ations through the heat exchanger. The accumulator will be sized to

successfully damp the pressure fluctuations that might be encountered.

The accumulators need to be sufficiently large to provide time for the
regulator to respond from a fully closed (locked up) position to an
open position. This problem might be eliminated by not having the
regulators lock up. During the coast mode, the conditioned propellant
would flow back toward the main vehicle tanks. However, the line
volume between the main tanks and the regulators should be large enough

to account for the increased propellant temperature from the heat
exchanger.

Method C: Pressure Regulator Between the Heat Exchanger and Accumulator.

From —_— To
Vehicle /AfV\A\ :gi%i Main

Tank Tank Valve Valve

‘{ ggt

Overboard Gas
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If the pressure regulator never locks up the response of the system is
increased and the need for an accumulator might be eliminated. In
practice, however, a small accumulator will be necessary. Placing the
regulator downstream of the heat exchanger might require either a tank
valve or a check valve to prevent back flow from the heat exchanger
during the coast mode. If the tank valve is necessary, a danger exists
in overpressurizing the gas in the heat exchanger during the coast mode.
However, a demand will be placed on the accumulator during the coast
period (to maintain heat exchanger tube temperature), thus attenuating

the overpressure condition.

Method D: Pressure Regulator Plus Follower.

Fremn . (- To
Heat T Main

Fxchanger / Valve

/
/
From To
Heat s Main
Exchanger Valve

Instead of using a pressure regulator for each side, a follower valve

can be placed on one side. This would tend to equalize the pressures

to a greater extent, since the possible error would be reduced to a
single tolerance as opposed to a two regulator system where it is the
sum of the tolerances. In addition, the weight of the system would be
decreased since the follower is not as elaborate a device as a regulator.
The position of the follower in the system is a function of the same
criteria that applies to the regulators. '
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Preliminary Fvaluation of Bellows and Bladders for Pressure

cgualization. The need for reducing or controlling the pressure dif-

ference between the two accumulators led to a feasibility study of sepa-
rating the containers with a diaphragm or bellows. A cursory literature
survey revealed two investigations of the use of expulsion bladders for
cryogenic fluids (Ref. 23 and 24). Since any one of three listed limi-
tations, incompatibility with LOX, low cycle life, and permeability,
could have catastrophic results, bladders at that time were not con-

sidered [ecasible.

The feasibility of integrating a bellows O2 accumulator into the larger

H2 accumulator was evaluated as follows:

1. The bellows would have to be 7.5 inches long with a 6.5 inch
ID and would have to be capable of expanding 6.6 inches and
contracting 1.1 inches at a frequency of 10 to 15 cps. A
spring constant of 2.5 1bf/in. or less would be desirable.

A cursory mathematical description of the bellows dynamics
acticn was programmed on the digital computer using the Midas
technique, Ref., 25 and 26, It appears that the mass and spring
constants necessary to give a rapid response are compatible

with present day manufacture.

2. A local representative of a company with considerable experience
in designing bellows-type expulsion bladders was given the pre-
liminary sizing requirements and reported that a bellows with

the following parameters could be built:

OD = 9 inches; ID = 7.2 inches; spring constant (K) = 5 1bf/in.
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Free length - 6 inches; L Maximum contraction - 4,17 inches;

L Maximum extension = 9.25 inches; volume displace compression =
215 cu. in.; volume displaced, expansion = 219 cu. in.

Pmax = 3 psi; mean effective area - 51.5 sq. in.
347 stainless steel; weight = 3.25 pounds; operating temperature =
200R; cycle life = 30,000

Generally, it was concluded that cycle~life failure would be the chief
shortcoming although the reported 30,000 cycle life is much greater
than that which might be expected from past experience (Ref. 27 and 28).
However, the cycle life is sufficiently long so that serious considera-
tion should be given to the device.

Temperature Control Considerations

In addition to a pressure control system, a temperature control system
is also needed. The determination of the type of temperature control
system can be divided into three separate questions: (1) what type

of temperature sensor to use, (2) where to place it, and (3) what should

it control.

The temperature sensing devices should give a relatively large current

or electromotive force (emf) delta output for a small change in tempera-
ture in the cryogenic range. A thermister appears to meet these qualifi-
cations, The placement of the sensor should be upstream of the main
thrustor valve since an erroneous temperature would be after the fact.
The sensor, however, should probably not be placed either in or immedi-
ately downstream of the heat exchanger due to the possibility of local
temperature and pressure fluctuations which may drive the control system

unstable.
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The temperature control will open or close the gas generator valves
that provide reactants for forming the hot fluid. No provision

is made for cooling the gas in the accumulator other than radiation
losses. It is expected that the control loop will sense a slug of
overheated gas entering the accumulator and shut off the gas gene-
rator valves fast enough for the accumulator volume to assimilate
the slug without exceeding the mean temperature deadband. The
ideal situation is to use a bipropellant valve for the gas gene-
rator so that both propellants enter the mixing volume simul-
taneously. The volumes should be sized such that the gas generator
will not go oxidizer rich during either the start or stop

transients.

SUMMARY OF CONDITIONER SUBSYSTEM ANALYSIS

A general HCS design for cryogenic 02-H2 propellants requires a condi-
tioner subsystem which is utilized to raise the temperature of the
propellants fed to a thrustor to a minimum acceptable value and to
regulate the thermodynamic state of propellants such that flow control
is maintained. A distinct subsystem approach to such an RCS design was
selected because the overall program goals were general in nature and
therefore the requirements on system operation were quite general,
Accordingly, the accompanying "applications" were only loosely defined.
In addition, the dynamic characteristics of actual system components were
unknown and control component availability unknown. However, results
obtained with such a general system could be applied to specific designs
when given applications are clearly defined.

The general requirements on system operation specified at the initia-

tion of the program included a mission time of from one hour to 220
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days. The former requires a high conditioning power requirement (13 to
30 kilowatts), the latter an efficient energy transfer. Hence, an energy
supply method that could meet the high power requirement at a reasonable
efficiency was selected. Hence, energy supply methods that could meet
the high power requirement at a reasonable efficiency were considered

and conceptual designs prepared. The evaluation of system dynamics and
response was another prime goal, and therefore conditioner subsystem

was designed to provide conditioned propellant to the thrustor upon demand
and to decouple the conditioner response from that of the thrustor. This
was accomplished by providing a surge volume (accumulator) between the
heat exchanger and the thrustor subsystem.

Energy and material balances accomplished on the conditioner subsystem
showed a sizeable percentage (5 to 30 percent) of the total propellant
flow must be diverted to the gas generators for conditioning purposes.
This diversion of propellant could result in specific impulse losses of
up to iLO seconds if the propellants were conditioned to a temperature
of 500 R, However, the cited specific impulse losses refer only to the
system designed for demonstration purposes in the present program.
Several design changes are possible which could result in large efficiency
gains., These include the use of auxiliary energy sources and integrated
reaction control system designs for specific applications, the use of
improved catalysts, and/or catalyst bed heater devices to circumvent

the low temperature ignition difficulties.

System control considerations show pressure control to be most significant,
particularly control of the difference between accumulator pressures.
Three types of pressure control were evaluated; (1) a pressure sensor
operating an on-off valve, (2) a regulating device, and (3) a bellows-
bladder device connecting the two propellant flow systems for pressure
equilization. The bellows concept was not considered further in this
program because of an uncertainty as to cycle-life under the conditions
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of interest. The other two concepts were to remain under consideration
pending analytical and experimental evaluations of specific devices.
Since suitable off-the-shelf components were not available for this pro-
gram, modified components were to be considered satisfactory for this
program.
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TARLT 10

DSTIMATED WIIGHTS OF PRESSURE PEEGUI..A'I‘ORSI'Z'

Temperature 500°R 400°R 300°F 200°R
“anie %2 W % H 0, H, 0, K
0.5 13 20 13 19 12 19 1 18
1.0 L 18 13 17 13 17 12 16
2.0 15 15 W 15 13 15 12 1
4.0 1 4 15 13 W 13 13 12
5.0 s 12 15 11 1 1 13 10

1. Veights in pounds
2. Regulator pressure drop of 2 psi
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TABLE 4

SAMPLE SPECIFIC IMPULSE ANALYSIS AND COMPARISON
FOR DIRECT AND INDIRECT CONDITIONERS
(CASE II)

Theoretical Thrustor Specific Impulse,
€ = 50, Full Frozen

Specific Impulse Saturated Liquid Propellants, seconds L40
Specific Impulse, 200 R Gaseous Propellants, seconds 450

Theoretical Thrustor + Conditioner System
Specific Impulse

Direct Conditioner With no H,0 440
Removal Starting With Saturated
Liquid Propellants, seconds

200 R Conditioner, Stoichiometric 450 (1.00 - 0.04L) = 431
or Direct With 1,0 Removal, seconds

Specific Impulse Loss Due to H,0 9
Removal, seconds <

Single-Stage, 200 R Conditioner 450 (1.00 - 0.11) = 401
Specific Impulse, seconds

Specific Impulse Loss Due to Single- 431 - 401 = 30
Stage Combustion, seconds

Actual Conditioner + Thrustor Specific Impulse
(Fig. 60, Papge 130, Ref. )

NSpecific Impulse (Thrustor), percent 92

Ne* (Gas Generator), percent 98
Specific Impulse Direct, seconds 0.920 (440) = 405
Specific Impulse Direct (With Water
Separation),seconds 450 (1 - 0.044) 0.92 = 396
Specific Impulse Loss Due to H,0 —_
Removal, seconds = 9
Specific Impulse Indirect, 450 (0.920)(1.00 - 0.11/0.98)= 367
seconds
Specific Impulse Due to Single-
Stage Combustion, seconds 396 - 367 =29
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Figure 61. Conditioner Power Requirements for Steady
: Propellant Flow
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THERMAL RESPONSE TIME
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Figure 68. Heat Fxchanger Thermal Response Time as a
Function of Hot Gas Pressure Drop
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Figure 70, The Effect of Insulation Thickness on Propellant
Consumption Required to Make-up Heat Leak to
Vacuum for a 220-day Mission
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OVERALL SYSTEM CHARACTERISTICS AND COMPARISONS

Cryogenic reaction control systems based on the conditioning corcepts pre-
sented in the previous section were compared with the objective of selec-
ting a system concept for experimental evaluaticn and demonstration. The
basic comparison was accomplished at the 10 psia pressure level for a
single thrustor-conditioner pair, and included the factors of:

a) system weight and volume (dry weight)

b) operability

¢c) reliability

d) maximum power requirements

e) anticipated development problems

The weight savings for multiple thrustors per conditioner were calculated,
The lowest weight systems were also compared at 100 psia and their charac-
teristics noted. The resulting information was used in the selection of

a system for further effort. Finally, a first-order comparison of the
system with a present day storable system was made to outline the total

impulse reguirements where the use of a cryogenic RCS would be advantageous.

LOW PRESSURE CONCEPT COMPARISONS

foncept Comparisons of Weight and Volume

Sizing of each of the representative conditioning systems was accomp~-
lished for comparison purposes. The pressure profiles shown in Figs.

AL through €7 were used as the basis for sizing each of the components.
Although the pressure profiles so utilized are not optimum in terms of
minimum total weight, or volume or of maximum reliability, it was defined

with consideration of these factors.

Weight Comparison. Figure 75 presents the weights of the conventional

heat exchanger system as a functicn of mixture ratio and propellant exit

temperature for the low chamber pressure operation. The system weights
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are presented for a propellant exit temperature range between 200 R and
500 R. 200 R was chosen as the nominal minimum operating temperature for
this type of conditioner based on thrustor inlet temperature considera-
tions. Figure 75 illustrates the desirability of operating at the lowest

possible thrustor inlet tempersture.

A weight comparison of the four candidate systems is presented in Fig. 76
as a function of the operating mixture ratio, for the lowest operational

temperature of each system. The direct heating system operating tempera-
ture was set at 500 R because of ice formation at lower temperatures.

The remaining systems are limited only by thrustor operating limits and/

or controllasbility considerations.

The hot-tube heat exchanger conditioner has the lowest weight end is from
10 to 20% lighter than the direct heating system, the next lightest system
(Fig. 76). The gross weight differences between the conventional and hot-
tube heat exchanger systems is primarily due to the large differences in
accumulator sizes, which are directly proportional to the system response
time. The response time of the conventional heat exchanger system is very
long due to the necessity of heating the exchanger tubes during the
initial transient. The hot-tube concept is not limited by such con-

siderations.

The direct heating system suffers a higher operating temperature limita-
tion which increases the size and weight of the accumulator. The weights
of the hot tube heat exchanger include the propellant venting subsystems
for clearing the heat exchanger of hot gas. If these subsystems are not
necessary, approximately 1.5 1lbs may be deducted from the values presented
in Fig. 76. The use of a pump provides no significant weight advantage
over the conventional heat exchanzer system and, at the lower mixture

ratios, is even slirhtly heavier than the conventional heat exchanger system.

The heat exchanrer system curves presented in Fic., 76 are based on a hot
~as temperature of 2500 R at the inlet tc the heat exchanser. A chenge
in this parameter from the nominal value of 2500 R changes the re-

~nired hot sas flowrate which marnifests itself in different eros
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generator, heat exchanger, and gas generator solencid valve sizes.
Further, changes in the hot gas flowrate requires an adjustment in the
heat exchanger minimum area, which for the same hot gas side pressure
drop changes the hot gas film ccefficient and the heat exchanger
response times. The variation of system weights with hot gas inlet
temperature for a constant hot gas exit temperature of 672F are shown
in Fig. 77. Weight (and volume) penalties result from large decreases
in inlet temperature. Weight saving of about 7% and volume savings of
about 11% could be attained by raising the hot gas inlet temperature
from 2500R to 3000R. These result from a decrease in the percentage of
propellant fed back to the heat exchanger as hot gas.

Volume Comparison. Figure 78 presents a volume comparison between the

four candidate systems. Again, the hot-tube heat exchanger appears as
the most attractive system, followed closely in order by the pump heat
exchanger system and the direct heating system. The net result of

using a pressure augmenting device is a large decrease in conditioner
volume requirements accompanied by an increase in system complexity

(and attendant decrease in reliability). The volume requirements of

the direct heating system are approximately double those of the hot

tube heat exchanger system. The volume requirements of the conventional
heat exchanger are over one order of magnitude greater than the most

attractive system.

Concept Operability

The candidate conditioning systems differ somewhat in operation and
start-up characteristics. To aid in a qualitative comparison between
the subsystem concepts, a preliminary description of control circuits

and system operation is given bhelow.
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Direct Heating Concept. A schematic of this subsystem concept is shown
in Fig. 64. Initially, the main propellant valves, the cross-feed sole-
noid valves, and the thrustor valves are closed, A temperature control
loop controlling the gas generator catalyst bed temperature has pro-
vided sufficient energy to the bed to ensure a bed temperature above

the minimum limit. This control loop is also required to control the
mixture ratio entering the gas generator catalyst bed to prevent over-
heating of the catalyst.

To start the conditioner the main propellant valves are opened allow=
ing propellant to flow through the catalyst bed and into the accumu-
lators. A temperature sensor measures the accumulator temperature

and if the temperature is too low, the cross-feed solenoid valve is
actuated, permitting oxygen (or hydrogen) to flow into the catalyst
bed, ignite with the hydrogen (or oxygen), and increase the propellant
temperature. A safety device is provided by only allowing activation
of the cross-feed solenoid valve when the main propellant valve is open.

If the pressure transducer sensing accumulator pressure measures a
pressure that is too low, the main propellant valve and subsequently
the cross-feed solenoid valve are actuated, providing additional mass
to the accumulator tanks.

Heat Exchanger Concept (Conventional). A schematic of the conventional

heat exchanger concept is shown in Fig. 65. To start the conditioner,
the main propellant valves are opened, permitting the propellant to
flow through the heat exchanger and into the accumulator. If the accu-
mulator temperature control loop senses the propellant temperature

is too low, the gas generator solenoid valves are activated permitting
propellant to flow into the gas generator, react, and heat the heat
exchanger,
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ing functions: (1) ensure the gas generator catalyst bed is above

163 R, and (2) control the mixture ratio in the catalyst bed to be above
163 R, and (3) control the mixture ratio in the catalyst bed to prevent
overheating. A secondary control loop may also be required to control
Lie hot-gas inlet temperature due to the presence of helium in the

srepeilants.

Operation of the control loop controlling the accumulator pressure

is identi-al to its operation in the direct heating system.

If startup problems occur due to the initial lack of conditioned propel-
lants in the accumulators, the system can be preloaded with precondi-

tioned propellants prior to launch.

Pressure—-Augmented Heat Exchanger Concept. Operation of the pump

A control loop monitoring the catalyst bed temperature has the follow-

heat exchanger conditioning system is identical to the operation of the
conventional heat exchanger with the exception of a turbine control

loop. The turbine and pump rotors would be kept at operational speed

at all times, independent of load, by varying the turbine inlet gas i
flowrate. When the main propellant valves are opened, the turbine 1

inlet gas flowrate would be increased.

Hot~Tube Heat Exchanger Concept. Operation of the hot-tube heat

exchanger is also identical to the conventional heat exchanger with

the exception of an additional control loop which senses the tube
temperature. If the main propellant valves are shut and the tube

temperature falls below a determined level, the solenoid valves are
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activated, permitting propellants to enter the catalytic gas generator,
ignite, and raise the tube temperature. This effectively eliminates
the thermal response time term and the response time of this system

is approximately equal to the main propellant valve opening time.

Conditioner Subsystem Reliability

A comparison of the conceptual systems was made to determine their
relative reliability. The components of each system were compared on a
relative basis, considering both the number used in each system and the
relative failure probability of each component. The analysis did not
consider the components downstream of the accumilator tanks, since
these components are common to all of the conditioning system concepts
and will not affect the relative reliability among the concepts. The
comparison is presented in Table 15. Two values are presented for the
hot tube heat exchanger. The first is predicated on the schematic dia-
gram shown in Fig. 67, and the second is predicated on the elimination
of the propellant venting subsystem since the necessity of venting has
not been definitely established.

Table 15 shows that the direct heating system has the highest relia-
bility followed by the conventional heat exchanger and hot tube heat
exchanger. The pump heat exchanger conditioning system has the highest
probability of failure due primarily to the presence of the pumps. For
very high reliabilities the reliability can be estimated as:
< P':nch
R=1 -:E:: 2;6;§ = 0,988 for the direct heating
x=] system
= 0,983 for the conventional heat
exchanger system and hot tube heat
exchanger system (without venting
subsystem)
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= 0,978 for hot tube heat exchanger
system (with venting subsystem)
= 0.963 for the pump-heat exchanger
system
assuming the system mean time between failures is much larger than the

total projected mission fixing time.

Table 16 lists the major failure modes expected in each system along
with the relative percentage which each failure mode contributes to the

overall unreliability of the listed component.

Maximum System Power Requirements

The maximum power requirements for each of the candidate systems were
obtained by linearly summing the valve power requirements, the catalyst
bed power requirements, and the accumulator tank power requirements.

The power requirements for the two solenoid vent valves used in the hot-
tube heat exchanger system were not considered since they are only

operative when the conditioning system is inoperative.

The results presented in Table 17 show the hot-tube heat exchanger and
pump heat exchanger systems have the lowest maximum power requirements
followed by the conventional heat exchanger system and the direct heat-
ing system, respectively. The total variation in maximum power require-
ments is very small, being 1l watts or approximately 10%. Exact power
consumption comparisons cannot be made unless both the ACS firing dura-
tion and operational mode have been prescribed.
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System Development Problems

Each conditioning system has several potential problem areas associated
with its development for use on flight vehicles. ZKnowledge of these
anticipated problem areas is mandatory if a comparative system analysis
is to be made.

One of the major problem areas associated with the development of a
direct heating propellant conditioning system is due to the presence
of liquid water in the propellants which may
(1) reduce the activity of the thrustor and conditioner catalyst
~ beds '
(2) freeze in the thrustor catalyst bed impairing or destroying
catalytic activity
(3) increase the uncertainty of reliable catalyst activity in the
conditioner catalyst bed

(L) cause slugging in the thrustor feed lines due to two-phase
flow.

The effect of the water on the catalyst activity is not known at pres-
ent, but at temperatures of approximately S500R, activity degradation is
not expected to be a problem. Freezing of water at temperatures below
1172 could be more of a problem. One solution would be to utilize an
electrical heater in the thrustor catalyst pack to maintain a SOOR

temperature. This would require relatively little power, approximately
5 watts.

Another method of preventing ice formation in the main catalyst bed as well

as preventimg slugging is to separate the water and the propellant. Several
methods of accomplishing the separation were considered. The most promising

would avpear to be chemical in nature, such as the use of silica gel
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and molecular sieve materials to absorb or adsorb the water. Such
methods will pose development problems. Weight penalties are not
expected to be unduly severe, "~ 10-20 1bs per conditioner system.
However, these methods will require two parallel systems so that regen-
eration can be included in the cycle and regeneration times are not
detinitely known, so that some uncertainty exists with respect to these

weights.

A second anticipated major problem associated with the development of
the direct heating conditioning system is the presence of low tempera-
ture hydrogen («163R) entering the catalyst bed and freezing the incom-
ing oxygen on the catalyst pellets degrading their activity. This prob-
lem may be partially circumvented by using conditioned hydrogen to feed
the oxygen catalyst bed. The use of conditioned oxygen to feed the
hydrogen catalyst bed is precluded, however, due to the low heat capa-
city of the oxygen and the relatively low mixture ratio (<X1).

This problem may be eliminated by a "boot strap" arrangement whereby a
small amouni of the hydrogen flow is heated by some energy source (such
as electrical or isotopic heaters) above 163R and allowed to ignite
with some oxygen. This combusted propellant is then used as a pilot
igniter for the balance of the propellants.

The third major problem area with the direct heating system is con-
cerned with the propellant feedback and the use of an accelerating
device, such as a venturi, to accomplish this feedback against a total
pressure gradient. The possible changes in the state of the entering
propellants make an adjustable venturi area necessary. Such a device

would require additional development effort.
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The chief problem area with the heat exchanger concept is associated
with the cold side heat transfer in the exchangers. With liquid or two

phase propellant entering the exchangers, slugging may occur.

The heat exchanger systems also have the problem of low temperature
hydrogen entering the catalytic gas generators. However, only condi-
tioned propellants can be used to feed the gas generators'(éfter
startup) as shown in the system schematic diagram. The weight penalty
associated with the additional heat exchanger flowrates is approxi-
mately one 1b. For system startup a "boot strap" described previously
may be utilized.

Integrated Conditioner—-Thrustor (Steady-State) Comparisons

An integrated conditioner-thrustor systeh is possible for certain appli-
cations, principally a steady-state propellant settling engine which is '
started and then runs for extended periods of time. The absence of an
intermittent propellant flow demand and of a need for fast response
would allow the removal of the components asscciated with such provi-
sions., Figure 79 presents a system weight comparison for two candidate
systems. The heat exchanger system is lighter than the direct heating
system throughout the entire mixture ratio spectrum considered. Two
different heat exchanger curves are presented in order to illustrate

the small system weight penalty associated with using conditioned
propellants to feed the catalytic gas generators. Figure 80 shows that
additional weight savings for the heat exchanger configuration are
possible utilizing 3000R hot gas instead of 2500R hot gas. System
welght penalties of approximately 3% and 8% are associated with opera-
tion using hot gas inlet temperature of 2000R and 1500R, respectively.
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A volume comparison cf the candidate system is presented in Fig. 81.
The effect of using conditioned propellants to feed the gas generators
is again shown. The volume required by the direct heating system is
less than that required by the hot tube heat exchanger, even though the
latter system is lighter, due to the relatively large void volumes of
the heat exchanger and gas generators.

The relative reliability and controllability of the integrated conditioner-
thrustor system would be approximately the same, as discussed previcusly,

for the pulse mode conditioning system.

ise of Regenerative Cooling

The desirability of using hydrogen to regeneratively cool the thrustor
suggests the feasibility of a combined conditioning system; one which
uses thrustor regenerative cooling as a means of supolying a porticn of

the conditicner power requirements.

If turbulent flow exists in the thrustor, approximately 6.5 BTU/sec

(MR = 2.5) can be transferred to the hydrogen from the thrustor. This

i1s sufficient to heat the propellant to 200R if the conditioner can
supply sufficient energy to the hydrogen to raise it to 163R. Since

the hydrogen flow into the catalytic gas generators comes directly from
the accumulator tank, it is necessary to condition the hydrogen to at
least 163R to prevent the oxygen from freezing on the gas generator
catalyst bed which may manifest itself in catalyst degradation. This
temperature (163R) represents the limiting case (maximum weight savings).

Figure 82 presents the weight savings resulting from the combined
regenerative-hot tube heat exchanger conditioning concept and Fig. 83
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*

represents the volume savings resulting from use of this concept. A
system weight savings on the order of 5% and a system volume saving on
the order of 15% are shown. The volume savings is primarily due to the
smaller hydrogen accumulator tank.

Number of Thrustors per Conditioner Subsystem

Low Pressure System. To determine the feasibility of utilizing one

propellant conditioner for more than one thrustor, all of the components
were sized for multiple flowrates. Sizing of the system components
(excluding the heat exchangers and accumulators) resulted in a nonlinear
weight increase as shown in Fig. 84. The heat exchanger system com-
ponent weights increase at a slower rate than the direct-heating system
components, This is primarily due to different weight rate increases

of solenoid valves and check valves. The direct-heating-system solenoid
valve equivalent orifice diameters are initially on the very steep
portion of the propellant valve weight curve.

The accumulators were sized according to the following equations:

5771”.’2
v=—3-——=53*77r3

g (30)
M=4Tt (31)
subject to the restriction that
Pt r .
- —y 3
t = 555 0.020 inches (32)

The response times of the heat exchanger systems remained constant, be-
cause the values were related to the thermal response times of the heat
exchangers. The response time of the direct heating system equals the

response time of the slowest valve (main propellant inlet valve). This

was approximated as the sum of the solenoid (pilot) actuation time, the
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f£ill time, and the poppet opening time. The solenoid actuation time

was obtained from the Gemini 100-pound-thrust engine as 0.020 seconds.
The £i11 time was calculated as:

% = I .-<.\/(o<-1) (RT )& (33)

The time required for the poppet to open was calculated as:

_\\/ﬁis AL f
The valve times were conservatively estimated by assuming the valve
centerbody cross—section area is proportional to the orifice area:

A, Ay (35)
Then the fill volume is approximated as:

Vv

F =D, gl =gl -\/zm'Ac (36)

where the length (L) is considered constant, and the gap thickness (g)
increases by 10 percent when the flowrate is doubled. Using these cri-
teria, the accumulators were sized. Minimum thicknesses can be utilized
virtually throughout the entire range of the numbers of thrustors considered.

The results of the multiple thrustor analysis are presented in Fig. 85
which shows both the hot tube heat exchanger and direct heating system
become increasingly attractive as the number of thrustors is increaéed.
For a module of 4 thrustors (only 3 can operate at a given time) the con-
ditioner weight increases by approximately 2.1 times for the hot tube
heat exchanger and 2.3 times for the direct heating system. A single
conditioner may also be used for 2 modules (6 operative thrustors) dependent
on the vehicle geometry and mission duration which will affect piping and
insulation weights., The relative volume comparison can also be inferred
to follow that of the weight camparison of Fig. 85. The inference is
possible because the accumulators comprise a significant portion of the
total system weight and over 90 percent of the total volume.
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PRESSURE LEVEL COMPARISONS

Effect of Pressure on C nent Weights

Significant component weight savings can be achieved with separate

RCS tankage operating at 175 psia (with a 100 psia chamber pressure)

due to smaller volumetric flow requirements and a larger available
pressure drop. Fig. 86 shows the effect of increased presvsure on con-
ditioner system weight. At a tank pressure of 175 psia and a chamber
pressure of 100 psia both the hot tube heat exchanger system and direct
heating system have virtually the same weight. The weight of the con-
ventional heat exchanger system decreases more rapidly than the other
systems since the accumular size decreases from both a pressure increase
and a decrease in thermal response time. The decrease in system dry
weight for the lowest weight system (hot-tube heat exchanger concept)

of from ~25 to ~8 pounds is quite significant. It is noted, however,
that propellant usage charges may differ between the two pressure levels, ’
Pressurant and propellants which might be normally "boiled off" might
under some circumstances be considered free for the low pressure system.
Moreover, tankage and pressurization system dry weight charges may
differ between the two pressure levels.

Using the sizing criteria discussed previously, multiple thrustor sizing
of the two most promising systems was made for operating conditions of
Pp = 175 psia and P = 100 psia. The results are presented in Fig. 87
along with the weights of the low pressure systems. Little weight dif-
ference is noted between the two systems operating at 100 psia. Again,
the advantages of using a single conditioner per module is apparent
since the conditioner weight of a 4 thrustor module (1 redundant) exceeds
by about 1.6 times the weight for a single thrustor module.
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Effect of Pressure Level on System Characteristics.

To evaluate the effect of pressure level on the characteristics of the
overall system, two configurations were compared;

1. Attitude control systems consist of: 4 modules, each module
is composed of 4 thrustors, 1 propellant conditioner, and
two tanks storing propellants at 175 psia,

2. Attitude control system consists of 16 thrustors in groups
of L, and 4 conditioners, with propellants supplied from
the two main tanks storing propellants at 20 psia.

The comparisons were made on the basis of weight, volume, reliability,
and controllability. The two pressure levels were compared with respect
to the welghts and volumes of the dry system, necessary propellant
charge, pressurization components, and pressurant. Two alternative
assumptions were made with respect to the propellant charge for the
low pressure system, no propellant charge and 100 percent charge. In
neither case were main tankage pressurization charges applied. Several
alternatives were used with the high pressure system; (1) propellant
charge only, (2) propellant charge only, but with 50 percent hydrogen
boiloff, (3) propellant and pressurization charges, and (4) propellant
and pressurization charges, but with 50 percent hydrogen boiloff. The
50 percent hydrogen boiloff case was selected arbitrarily. Detailed
boiloff and energy transfer studies were not accomplished, and weight
and volume charges for the necessary insulation are not included in

the reported values.

Weight Comparison. Fig. 88 presents the weight comparisons between the
systems with the various cases described above. The break point between
the two systems lies in the range above 6400 lb-sec per module of four
thrustors (three active and one redundant).
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Volume Comparison. The volume of the high pressure system is con-
siderably smaller than the low pressure system volume due to both an
increase in accumulator pressure and a decrease in conditioner response
time. The ratio of accumulator volumes, which comprises a very signifi-

cant portion of the module volume, can be approximated as:

W PLTH

Therefore, the volume of the high pressure system is approximately 22
times smaller than the volume of the low pressure system. Additionally,
the increase in module volume is directly proportioned to the module's
total impulse requirements. Figure 89 presents a low pressure-high
pressure module volume comparison which shows the high pressure system
requires lower volumes below 5250 lb-secs and 7000 lb-secs dependent on
the low pressure thrustor configurations. If the design is predicated
on 50% boiloff, the total impulses at which the low pressure system

volumes become smaller are 3700 lb-secs and L4900 lb-secs.

The volume comparisons shown in Fig. 89 represent a limiting case in
that thrustor volumes were included. If the thrustors are mounted
external to the vehicle and volume charges are not assessed for the
thrustors the break points are lowered. In the case of no hydrogen
boiloff, the two systems have equal volume requirements at approxi-
mately L100 lb-sec total impulse, a decrease of approximately 700 1b-

sec and 2600 for the truncated spike and bell low pressure thrustors,
resoectively.

Reliability Considerations. A reliability analysis of the two proposed
configurations was made to determine which configuration would yield a
greater probability of safe return to earth. A study of the two con-
figurations shows that the component parts are identical except for the
propellant tanks. Assuming that the interactive effects between the
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two tank configurations and the remainder of the system are similar,
a comparison of Configurations I and II can be achieved by comparing
the tanks only. This comparison is presented in Table 18 and shows

the modularized (high pressure) system has a slightly higher reliability.
Failure rate estimates are based upon data from generic systems.

Controllability and Operability. Systems operating at the two specified
pressure levels have associated characteristics resulting fram the method
of propellant supply. The low pressure system characteristically has

a large relative uncertainty in the propellant supply pressure which
depends on the opposing effects of pressure.generation (heat leakage
rates) and propellant usage. The net result will be dependent on the
mission and vehicle under consideration.

Likewise, there is a probable uncertainty in thermodynamic state and
composition of the propellants delivered to the RCS. In a spacecraft
designed for long duration missions, the hydrogen will probably be near
a temperature of LOR, but in a mixed phase condition; and small amounts
of helium will probably be present. The oxygen state is likely to be
similar but with the possibility of a greater fraction of helium
present. Conversely, other vehicles designed for short duration mis-
sions, such as upper stages or orbital tankers, may use heat exchange
methods or appreciable quantities of helium as an ullage gas supply in
which case the state of the propellant would be specific to a given

vehicle,

The low pressure system also presents the difficulty of a minimum pres-
sure inventory under the ground rules of nominal supply and chamber
pressures of 20 and 10 psia, respectively. It was noted in the appli-

cations survey effort that in many cases the oxygen main-tank storage
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pressures are nominally 30 instead of 20 psia. This indicates the

20 psia level to be on the conservative side. It is expected tﬁat the
final storage pressures and the chamber pressure would result from a
vehicle trade-off involving tankage weight, RCS controllability, RCS
component weights and volumes, and the thrustor size and operating
characteristics. However, for the purposes of evaluating system con-
cepts and demonstrating the feasibility of such a system, this conser-

vative ground rule was maintained.

The higher pressure system utilizing separate propellant tankage does

not have the same pressure inventory problem, thus making the system

more controllable. Also, the higher gas pressures and greater allow-
able pressure drops lead to significantly smaller equipment which are
closer in design to the present state—of-the-art. Although heat leakage
to the RCS storage tanks could be of major importance in causing excessive
boiloff, this might be circumvented by thermally tieing the RCS tasks

to the main propellant storage tanks.

SELECTION OF SYSTEM CONCEPT AND PRESSURE LEVEL

Concept Selection

Relative Comparisons of Subsystem Concepts. Each of the candidate
conditioning systems was evaluated with respect to a number of consid-

erations including weight, volume, and reliability. To accomplish
this rating, a numberical rating system was devised in which the optimum
system receives a rating of 10 and the other systems receive lesser




Mkm ROCKETDYMNE . A DIVISION OF NORTH AMERICAN AVIATION, INC.

ratings dependent on their relative standing, with a minimum
rating of unity being imposed. Each of these rating factors
must then be weighted with respect to the type of mission and
engine application. The relative rating system was based on the
following criteria:

1. Weight

2. Volume

3. Reliability

L. Control level

5. Development problem areas

6. System integration (feed system and power requirements)
7. Prior experience

8. Duty cycle (system specific impulse)

9. Temperature effects (material requirements and insulation

requirements)

10. Manmufacturability
11. Growth potential (to 500-pound thrust)

Weighting factors were also developed for both manned vehicles and
unmanned vehicle application., Since there are 11 categories to be
evaluated, the most significant parameter was given a weighting factor
of 11 followed by a 10 for the next most significant parameter, etc.
The weighting factor was then multiplied by the rating factor and the
results summed to achieve a final rating. The results of this compari-
son are presented in Table ' 19 for both manned and unmanned vehicle
aoplications. The results show the direct heating system and hot-tube
heat exchanger system are vastly superior to the other candidate systems.
It is noted that small changes in the weighting factor and/or rating
facter will not change the relative standings of the candidate systems.

The major advantage of the direct heating and hot-tube heat exchanger

conceots over the conventional heat exchanger concept is one of system
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response, The pressure-augmented heat exchanger concept represents
an attempt to increase the response by increasing the pressure driving

potential for heat transfer. However, this requires additional weight.

Selection of Conditioner Concept. The hot-tube heat exchanger concept
is thought to be subject to less technical uncertainty than the direct
heating concept. In the latter, the interaction effects of the presence
of water on the low temperature reaction and the water contamination
effects on flow control are unresolved. The heat exchanger operation
is more straightforward technically. The chief uncertainty lies in
the possibility of liquid slugging in the heat exchangers because of
boiling induced instabilities. This is of major concern on the oxygen
side. Although the calculated heat transfer coefficients are not con-
sidered exact, errors in their estimation should only influence the
size and weight of the system to a minor extent. This is because the
heat exchanger does not represent the major component in either a

weight or volume sense,

Based on the results presented above the hot-tube exchanger concept
would seem to present the optimum combination of technical knowledge
and system design characteristics such as weight, volume, reliability,

etc. Therefore, this concept was chosen for further study.

Selection of Pressure Level

The preliminary concept comparisons show the low pressure (10 psia)
system to represent a smaller weight and volume penalty for high total
impulse requirements. The actual value of the crossover point between
the two systems must result from a detailed tradeoff between hydrogen
boiloff and insulation for the separate tankage system and considera-
tion of propellant and pressurization charges for the low pressure
system. Control aspects of the separate tankage system should be
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more amenable to solution because of the greater pressure potential

available, However, control of the low pressure system does seem
feasible.

The low pressure system utilizing main tank propellants has several
advantages not quantitatively evaluated in the foregoing discussion.
The system would be capable of utilizing boiloff propellants which
would normally be vented overboard in controlling the main tankage
pressures. This could result in a considerable propellant weight

saving over a long duration mission.

Further, the total availability of propellant from a single source
eliminates the complexity of maintaining separate, well-insulated
propellant systems for each RCS module. However, such a system would
necessarily require placement of the RCS modules in close proximity
to the main tankage. In this case the separate tankage system is seen
as the more versatile.

Two other factors must be considered. There is almost no techni-~
cal background for the low pressure system. Second, data obtained
for both the thrustor and conditioner subsystems at the 10 psia
chamber pressure level can be extrapolated to higher pressure

in conjunction with existing data with a substantial degree of

confidence. This would not be true for the extrapolation to lower
pressure,

The pressure level selected for further effort in the present pro-
gram was the 10 psia chamber pressure. The selection was based

on favorable system volume and weight for high total impulse missions
(> 700 1b-sec) and on the lack of existing technology at this low
chamber pressure.
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CRYOGENIC AND STORABLE PROPELLANT REACTION CONTROL SYSTEM COMPARISONS

This section presents comparisons between storable and cryogenic reaction
control system with the purpose of outlining the areas of total impulse
for which the cryogenic RCS is most attractive.

Although the comparisons presented herein are based on system weight and
total impulse, other factors must also be considered. Such factors as
temperature compatibility with the vehicle, power and electrical energy
requirements, reliability, simplicity, etc., must also be considered,
Final comparisons must be made in terms of a vehicle tradeoff. However,
the simple comparison presented herein can serve as a guideline in illus-
trating the general attractiveness of the cryogenic (02-H2) reaction

control systems.

Three reaction control systems are compared; (1) storable bipropellant
(NTO/M#), (2) 100-psia chamber pressure cryogemic, and (3) 10-psia chamber
pressure cryogenic. Systems (2) and (3) were considered in the present
contract; system (3) represents the system experimentally evaluated. The
comparison is based on a module of four thrustors with a single set of
tankage.

System Definitions and Assumptions

Storable Bipropellant System. An NTO/MMH system was selected as the base
system for comparison. A delivered specific impulse of 300 1bf-sec/1lbm

was assumed for calculational purposes. Although the storable RCS is com-
pared directly with the cryogenic systems and application to cryogenic
vehicles is assumed, no weight charges for insulation or auxiliary heating
is assumed. These are a function of the mission and vehicle particulars,
and cannot be determined a priori. Hence, the resulting storable system

weights are considered conservative for comparison purposes.
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The storable system weights are in general based on state-of-the-

art components but without the redundancies associated with man-rated
systems. The storable system includes the pressurizing system

and pressurant, the propellant tankage and propellant, and four
thrustors,

Low-Pressure Cryogenic System. The low-pressure cryogenic system

design is based on withdrawing propellant from the main vehicle
tankage associated with a pump-fed main propulsion system. A
nominal chamber pressure of 10 psia and tankage pressures of 20
psia are assumed. This is somewhat conservative because the pres-
sures in such tankage are usually at higher levels. Catalytic
reactor ignition is assumed in the thrustor and gas generator
designs.

The comparisons are based on liquid propellants (at the normal boil-
ing point) delivered from the main tankage to the module and on a
conditioned propellant temperature of 200 R. Assuming a liquid pro-
pellant feed is conservative in the sence that specific impulse will
increase if propellants of higher enthalpy are fed to the system.
Also, the necessary conditioning weight will decrease if this con-
dition can be guaranteed. A 200 R value for the temperature of the
propellant feed to the thrustors is used, based on the possibility
that improved catalyst, slight relaxation in the pressure, or main-
tenance of warm catalyst beds will alleviate the cryogenic ignition
difficulty.

A heat exchanger conditioning system similar to the one experimentally
evaluated is assumed. Insulation weight for reducing the heat leakage
from the heat exchanger is included. No insulation is included for the
purpose of isolating the system from the surrounding enviromment.

197




'Mk ROCKETDYNE . A DIVISION OF NORTH AMERICAN AVIATION, INC.

The hot gas used for conditioning purposes is dumped overboard, result-
ing in a specific impulse degradation. However, such a system design
would not be optimum for a slow response application such as a settling
engine. In such a case the conditioner could be combined with the
thrustor in a manner similar to regenerative cooling. A specific
impulse gain because of increased propulsive mass flow would result.

Component weights are estimated, based on the present state-of-the-
art. This represents considerable extrapolation in some cases because
the low pressure, low-pressure drop, moderate volumetric flowrate

application is somewhat unique.

The optimum control system for the low-pressure cryogenic system has
not been determined and may differ, according to the applications.

One strong possibility involves the use of pressure regulators., Esti-
mates of the weight for such devices result in values that are a sizable
fraction of the total system weight because of the requirement for
large, equivalent-orifice diameters. Because of the possibility that
major advances can be made in the design of such devices, that inlet
pressures might be raised, thus decreasing the equivalent orifice di-
ameter, or that alternative control systems might be used, the system
weights were determined both with and without regulators. When sizing
without regulators, sufficient valves were included to allow on-off

control.

High-Pressure Cryogenic System. The high-pressure cryogenic system

design is based on separate propellant storage for each module of four
thrustors, complete with a pressurization system for the oxygen. Pres-
surization was assumed as unnecessary for the hydrogen. Nominal tankage
pressures of 175 psia and a chamber pressure of 100 psia were used

for sizing purposes. Again, a heat exchanger maintained at operating
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temperature was assumed as the basic conditioning device. Insulation
(min X 2000) for the exchangers and gas generators were included in the system

weight; insulation for the remainder of the system was not considered.

A 200 R temperature was used as the thrustor feed temperature. Previous
studies (Ref. 2 and 3 ) have indicated reliable ignition at this
temperature and the pressure of interest.

Pressure regulator weights were again found to be a significant, although
smaller, fraction of the overall system weight. Therefore, the weights
of two systems, with and without regulators, were determined.

System Comparisons

Storable With Low~Pressure RCS. The comparison of the low-pressure

cryogenic RCS with a storable RCS is presented in Fig. 90 and 91 for
conditioned propellant temperatures of 200 and 4LOO R, respectively.

Two low-pressure system dry weights are indicated, both with and with-
out regulators for system pressure control (regulator weights are
discussed earlier). Two propellant charge lines are also indicated

in Fig. 90, corresponding to a charge for only the oxygen and for

both propellants. The weight crossover point is in the range of
~50,000 lb-sec total impulse for the 200 R conditioned propellant
temperature. For oxygen charges only, and no propellant charges,

the crossover point drops considerably. It is also emphasized that
insulation weights are not included. When this is included, the storable
values will be increased and the crossover point will be moved to lower
values of total impulse.

The effect of conditioning the propellant to a higher temperature is
seen to move the crossover points to a higher total impulse value

(Fig. 91) for both the dry weight and oxygen charge cases. The
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delivered specific impulse for total propellant charges is depressed

to the point where the weight curve almost parallels the storable system.
This shows the undesirability of conditicning the propellant to such a
high temperature. It is reiterated that ignition with ~ 200 R propel-
lants and ambient catalyst bed temperature have been reliably achieved.
Thus, 40C R propellant conditioning is not presently envisioned as a

requirement, if the catalyst bed temperature is suitably controlled.

The comparisons suggest a low-pressure cryogenic system, which utilizes
main tankage propellant, is more attractive than a storage system

from a total system weight standpoint at high values of total impulse
(50,000 lb-sec and above) irrespective of other advantages such as
thermal compatibility. At higher total impulse values (Fig. 92), the

weight differences became substantial.

Cryogenic System With Separate RCS Propellant Tankage. A comparison

of the higher-pressure (100-psia chamber pressure) cryogenic system
which is representative of separate storage of the RCS propellants

is shown in Fig. 93. The dry weight of the system is smaller than

with the low-pressure system, but the slope is slightly larger because
of a charge for oxidizer pressurant. The crossover point for the higher
pressure cryogenic system with the storable system lies at about the
same total impulse as the storable system crossover point with the
low-pressure system. The low-pressure system is seen to result in
lower system weights than the 100 psia system for high total impulse

requirements,

SUMMARY OF SYSTEM SELECTION

A comparison of cryogenic reaction control systems utilizing the condi-
tioning concepts described in the previous section showed the hot-tube

heat exchanger concept to be most attractive from minimum weight and
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volume, technical state-of-the-art, and operability and controllability,
standpoints. This concept was selected for experimental evaluation and

demonstration purposes.

A choice of the low pressure level RCS system (10 psia for thrustor
chamber pressure) over the higher pressure system (100 psia) was made.
The selection was chiefly based on a favorable weight comparison for
high total impulse system (~7000 - 10,000 1lb-sec) and the lack of
existing technology at this pressure level for both the conditioner
and thrustor. Interpolation of the results experimentally obtained in
this program and those previously obtained at higher pressures (100 to
200 psia) can be used to cover all pressure ranges of future interest.
Further, the low-pressure system imposes the more difficult control
problem because of a lower acceptable pressure drop and the large size
required for the components. Thus, it was felt that effort on the
low pressure system would provide the technology rzquired to distinguish
between the alternatives in future efforts and to define the technical

problems associated with each.

A first-order system comparison of the cryogenic systems with a present-
day storable bipropellant RCS showed the attractiveness of the cryogenic
RCS concept. This is especially true in the case of large total impulse
requirements (a/50,000 lb~-sec) with a low-pressure cryogenic system

drawing propellant from the main propulsion system tankage. The attrac-

tiveness is more pronounced in the case of boiloff propellant usage.

The high-pressure system was also indicated to be more attractive than
the storable system at total impulses above 40,0CC lb-sec. However,

the weight of such a system was found to increase faster than the
low-pressure system (Fig. 92). This resulted from oxyger pressurization

requirements,
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The aforementioned conclusions are subject to consideration of other
significant factors such as temperature compatibility, reliability,
simplicity, etc. Final comparisons must be accomplished in terms of
vehicle tradeoffs., However, the weight comparisons do indicate an

attractive potential for the cryogenic RCS concept.
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TABLE 16

COMPARISON OF MAJOR FAILURE MODES

Failure
Mode Distribution,
petrcent
Direct- Heat
Heating | Exchanger | Pump Heat
Failure Mode Systems Systems Exchanger
Solenoid Valve
Internal Leakage 75 75 75
Fail to Open 12.5 12.5 12.5
Fail to Close 12.5 12.5 12.5
Main Propellant Valve
Internal Leakage 75 75 75
Fail to Open 12.5 12.5 12.5
Fail to Close 12.5 12.5 12.5
Check Valve
Reverse Leakage 100 100
Catalyst Pack
Catalyst Degradation Not - -
External Leakage Available
Internal Leakage
Heating Element
Open Circuit 100 100 100
Accumulator Tank
External Leak 100 100 100
Gas Generator
(Catalytically Ignited)
Catalyst Degradation - Not Not
Eiternal Leakage Available | Available
Internal Leakage
Heat Exchanger
Internal Leakage - Not Not
Available | Available
Pump
Piston Galling
Valve and/or Piston - - Not
Leakage Available
Bearing Failure

04




TABLE 17

SYSTEM MAXIMUM POWER REQUIREMENTS

System

Direct Heating

Conventional Heat
Exchanger

Hot-Tube Heat
Exchanger

Pump Heat
Exchanger

Maximum Power Requirement = P

205

+
accumulator

Maximum Power
Requirement,
watts

161

153

147

147

Pvalves * Pheaters
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Figure 76. Comparison of System Weights for Four Conditioner
System Concepts
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Figure 79, System Weight Comparison for a Steady
State Propellant Conditioner
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SYSTEM WEIGHT, pounds
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Figure 80. Variation of Heat Exchanger Conditioner
Weight with Hot Gas Inlet Temoerature
(System without Accumulators)
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SYSTEM VOLUME, inch’
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Figure 81, System Volume Comparison for a Steady
State Propellant Conditioner
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SYSTEM WEIGHT, pounds
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Figure 82, Weight Savings Resulting from a Combined
Regenerative~Hot Tube Heat Exchanger
Conditioning System
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SYSTEM ANALYSIS AND SIMULATION

The program objectives of maximum response and repeatability, as well
as the unknown nature of the possible problem areas associated with
the system, made necessary more detailed analyses of the individual
camponents and component interactions. This was accomplished prior
to the experimental work and was utilized in final component design
and in the selection of control devices.

The analysis effort was complicated by the complexity of the dynamic
interaction between components and, at least initially, by unknowns

in the component operational characteristics. The approach was to
model each component in terms of mass and material balances and trans-
fer processes, to translate this model into a computer subprogram, and
then to combine subprograms as necessary tc simulate subsystem or system

operation.

The overall system simulation was used to predict the operating charac-
teristics of the system and the degree of component interaction. In
addition, the adequacy of the control system was evaluated. The com—
ponent subprograms were used to determine the effects of design para-
meters and system operating parameters (temperature and pressure) on
operating characteristics. The thrustor model was also used to predict

transient and pulse-mode operating characteristics,

THRUSTOR SIMULATION

A mathematical model of the catalytic thrustor was formulated and
programmed for computer simulation. Primarily, the computer model was
used to demonstrate the system operating characteristics including
both transient and steady-state operation. Cause and effect relation-
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ships were determined by varying the design parameters and observing
changes in system operation. The effects of changes at the interface
with the conditioner (propellant temperature and pressure) were also
evaluated.

Description of the Thrustor Model

The computer model is made up of fluid resistive elements to simulate
pressure drop, fluid capacitive elements to simulate the storage of
mass, and thermal capacitive elements to simulate the storage of heat
energy. These elements are linked together in a network of equations
with appropriate control elements and program logic to form a model of
the above system. Function generators have been added to simulate the
variation of accumulator pressures and to simulate the thrustor duty
cycle. One assumption implicit in the model is that chemical reaction
does not control the response and/or the steady-state operation of the
thrustor. This assumption was extrapolated from the higher pressure

results from Ref. 2.

The model is non-linear and uses lumped parameters. The catalyst bed
model is multi-nodal and describes variable reaction, temperature, and
pressure along the bed length.

A typical thrustor is illustrated in Fig. 94, A corresponding com-
puter model schematic is shown in Fig. 95. Note that there is an
optional bypass upstream of the injector for both oxygen and hydrogen.
The oxygen bypass represent downstream injection whereas the hydrogen
bypass can be used to simulate the flow for regenerative or film cool-
ing of the chamber. In some cases, it is of interest to have no

propellant bypass.
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The computer model is a mathematical description of mass and energy
flow and storage as well as the combustion process in the thrustor
system coupled with computer logic to simulate its operation. The
model is capable of depicting the effects of varying system parameters
such as: the inlet pressures and temperatures, steady-state pressure
drops throughout the system, volumes, valve opening times, valve
sequencing, catalyst bed heat capacity and initial temperature, steady-
state catalyst bed temperature distribution, steady-state propellant
flowrates, and thrustor duty cycle. The computer program sizes the
system on the basis of given steady-state operating parameters and then
determines the system pressures, temperatures, and flowrates as func-
tions of time for a specified duty cycle. Both a graphical and numeri-
cal output are produced.

The equations used to formulate the model are presented on the following |
pages.
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Inlet Pressure Function Generators. The oxidizer inlet pressure is
described by:

,ﬁ'._.__ £ + Be sin {ZTT % (t- X’e)} (38-a)

or

R R (1 - expl-74)) (Go-0)

The fuel inlet pressure is similarly described:

ﬁ'_—_ R + B.sin {ZI/I £ (?("’h)} (39-2)
BB e[ )

By setting the amplitude of the a.c. component of the sinusoidal func-

or

tion to zero, a constant inlet pressure is obtained.

Valve Flow Rate Descriptions. The oxidizer flow through the propellant

valve is determined by:

. ~ Yz
v\/o';CaAa Y: %23@/; (ﬁg”ﬁxv} (40)

This equation is modified such that:

P = () Re (41)

so that the sonic flowrate cannot be exceeded. Any pressure drop due
to line friction is considered lumped with the valve.

The hydrogen flow through the propellant valve is similarly:

x/'\/h:C;‘AhK{Zaﬁ‘, (.724_ 7&)}& (42)
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Line Pressure Description. The pressure in the oxygen line is:
I N
= (BTN )[(w SV 7 Ve 5T W)

The pressure in the hydrogen line is similarly:

o= (RhiMy )}) (W - Whi —Whe) 4T “w

Line Flow Rate Description. The oxygen flow to the injector is:

e

- - I
. A i ) 2 - . P ‘ - ,—D A ;o e
W = CaAuto {‘« 32 (i FES (45)

The hydrogen flow to the injector is similarly:

Whl = Ckl Am X( {: i\ ff; k«,l: ~ ../t_.'i )S (16)

Injector Storage and Mixing Description. The weight of propellant in

the injector is:
Ji(v"‘ |‘+MEL > (Wm |+Mg )w Tun

The temperature of the propellant mixture in the pre-mix volume is:

—

-E- = J ’\b'/* C’Fc ;.T;i + WM < 7;,. b= Y F. T) f TS /‘H “ A
(48)

Catalyst Bed and Mixer Parameter Descriptions. The pressure in the
mixer volume is:

£o= FT Ve (49)
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The flow to the mixer is:

L R
. ~ N T N
\/\,m = U me /\ul b ('."é:\ /f (.E /nﬂ, )f (50)
The pressure in the mixer section is:

o= T A -

Y

The flow through the catalyst bed is based on an average density
through the bed: Y,
A

W= G { e (B )t

(52)

The temperature and pressure distribution through the bed is
prescribed.

Chamber Parameter Description. The chamber pressure is obtained from:

N
-PC AN \/j(\ Wy, T Wee + \VV/H - \r'\Z,J aT  (53)

The combustion temperature is computed as a function of chamber mixture
ratio and then adjusted for the heat lost to the catalyst bed.

To= S0 = Qo /(i + g+ 2w, ) o

The oxygen bypass flow is:

Voo e Az (R Ty (%)

J

and the hydrogen bypass flow is:

Y A ! - , ,/'._A
V\/i‘ TN f\, T \;‘/Iw ?g: vt b - ',‘/ vy (:6)
AS
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The flow out of the combustion chamber is assumed sonic at all times
and is described by:

. ﬂ A‘f 3 K+/
e Z__N\NwT (57)
W Vk-3RT: \Rk+'> &

Thrust is obtained by:

where

Cp = £ (R) ' (57-b)

quuence‘of Computer Logic

The computer program can be broken down into a number of sub-sections:
input, computation of system constants, setting of initial conditions,
main program computation and logic time sequencing, and output. Feed-
ing the main program computation section are various subroutines which
represent system components. The input and output parameters are pre-
sented in Table 20.

The system constants are based on the input data relating to steady
state information. The most significant of these are the various
component flow areas and the percent reaction at each node through the
catalyst bed. Except for the initial mixer and propellant bed tempera
tures, all initial conditions are set to zero.

The main program computation and logic is briefly described by the
chart in Figure 96, A time sequencing section merely increments time
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at each pass through through the computation. In addition, printing
and plotting indicator variables are sequenced. The output section
stores the results in computer memory and at the proper time, as noted
by the indicator variables, prints and plots the data.

Effect of Feed Perturbations on
Thrustor Operation

The thrustor performance variation (/A F) and the fluctuation in cata-
lyst bed temperature are a function of changes in propellant inlet
pressure and temperature from nominal design. Variations in the pro-
pellant inlet condition are governed by pressure and temperature design
tolerances of the conditioning system.

Operation of the selected conditioner concept calls for on-off opera-
tion controlled by sensing the accumulator pressure; on at 16.0 psia,
off at 17.5 psia. For a subsystem with an accumulator volume of 1200
cubic inches, a steady-state thrustor demand should impose a con-
ditioner operating cycle at a frequency of approximately 10 to 20 cps.
It is necessary to determine the effect of a worst case perturbation
on thrustor performance characteristics, A worst case condition re-
sults when the highest O2 density couples with the lowest Hz density
or vice versa. More specifically, the worst case is defined as one
propellant inlet pressure at 17.5 psia (the accumulator relief pressure),
and the other inlet pressure at the given minimum pressure. Similarly,
the inlet temperatures are such that the lower temperature propellant
is that at the higher pressure, For example, if the minimum pressure
is 15 psia at the axygen inlet and the temperature band is T 20 R,

the inlet conditions would be 15 psia and 220 R at the oxidizer inlet
and 17.5 psia and 180 R at the hydrogen inlet.
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These steady-state pressure and temperature perturbations were fed
into the thrustor computer model and the changes in catalyst bed
temperature and thrust were determined.

Two nominal inlet pressures; 17 and 20 psia, and an overshoot of 0.5
psia were considered. Thus, maximum pressures of 17.5 and 20.5 psia
were selected. The effects of deviations in the other inlet pressures
for both oxidizer- and fuel-rich conditions were determined., Also,
by changing injector pressure drops, several values of catalyst bed
pressure drops were considered. An adverse temperature deviation of
120 R on each propellant was also imposed such that the density
deviations were amplified.

The change in catalyst bed temperature from the nominal design of
2000 R for a thrustor with downstream injection of oxygen is shown
in Fig. 97 as a2 function of the deviation in inlet pressure. To
illustrate, the parameters for the two upper middle curves are:

1. APcat' = 2,0

2. 0

> inlet pressure = 17.5 psia for solid and

20.5 for dashed lines
3. O, inlet temperature = 180 R

L. H2 inlet temperature = 220 R

As the H2
causing the mixture ratio and consequently the bed temperature to

inlet pressure is reduced from nominal, the H2 flow decreases

increase. The extreme lefthand point considered the worst oxidizer-
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rich case since the highest 02 pressure and lowest 02 temperature
are coupled with the lowest H2 pressure and highest HZ temperature,

thus giving the highest MR change.

For the bottom set of curves, the temperature deadband has been
reversed and the H2 inlet pressure has been set at 17.5 psia while
the 02 pressure has been varied, thus illustrating the fuel-rich

case,

It can be concluded from Fig. 97 that catalyst bed pressure drop has

a most pronounced effect on catalyst bed combustion temperature.

As the nominal design pressure drop across the catalyst bed is in-
creased, the allowable naminal pressure drop across the injector face
decreases, For example, when the zchat is 4.0, the nominal pres-
sure drop across the injector face is 3.0 psi. When the hydrogen inlet
pressure 1s decreased to 15.0 psia, the hydrogen AP across the
injector face is decreased to about 1 psi or by a factor of 3. Thus,
the net effect of a large ‘fﬁPcat is to choke off the flow of the lowest
pressure propellant and thus cause large variations in the catalyst
bed combustion temperature.

The net effect of increasing the nominal pressure to 20 psia is to

attenuate the shift in combustion temperature with Z&Pcat.

Hand calculations were made for the case of [&Pcat = 0 for a
nominal pressure of 17.0. The computer curves seem to approach
this limit as AP__, is lowered, thus the results are deemed in

agreement.
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The effect of temperature deadband of * 20 can be isolated from
inlet pressure variations by noting the righthand point where pro-
pellant pressures are equal. It can be concluded that shifts in
propellant inlet temperatures are less important than shifts in
propellant inlet pressure.

Figure 98 shows how the thrust varies as a function of the same
inlet perturbation and parameters as used in the previous example.
In this case the O2 bypass valve was programmed to close when
the catalyst bed temperature decreased 500 R from nominal. This
causes the discontinuity in the lower fuel-rich thrust curves of

Figure 98.

The thrust variation curves for the oxidizer-rich case (upper
curves) appear to be relatively insensitive to hydrogen inlet
pressure. These curves are displaced a horizontal distance of
about 0.05 which indicated that the temperature deadband of

t 20 R is the controlling factor. The reverse is true for the

lower curves,

Changes in catalyst bed temperature for full flow (nominal bed
temperature 4000 R) as a function of inlet propellant perturbations
(Fig. 99) have not been fully investigated. But, the results are
similar to those shown in Figure 99 for the downstream injection
case with the exception that the swings in temperature for a given
perturbation are larger for full flow. The relationship for

a perturbed mixture ratio (for no catalyst bed pressure drop)
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P f .
O, . i T inlet H
- _ 2 inlet 2 : £ed
MR _—PH | TiaTet o 5, (MR nominal) (5€}
2 inlet

shows that a given inlet perturbation is multiplied by the original
mixture ratic. Thus, the larger the nominal mixture ratic. the larger

the swings in catalyst bed temnerature.

Also, the thrust variation should be the same for downstream injection
and full flow for the uspecial case of Apca
the fact that the change in the combustion chamber mixture ratio for

t = 0, This resulits from

both cases is identical.

Worst Case Definition. It was noted that the previous definition of

the worst case situation assumed the highest 02 pressure (17.5 psia)
and the lowest 02 temperature (180R) are coupled with the lowest H2
pressure (15.0 psia) and the highest H, temperature (270R). This may
be unduly restrictive, since the accumulator pressure cycles within a
deadband with a frequency near that of the pulse frequency and is not
censtant as previously assumed. A dynamic accwmlator perturbation was
studied using the most recent version of the computer thrustor model
which has a sinusoidal accumulator pressure generator (Po + 5%2 sin 2
TTft) and provisions for inserting any desired temperature gradient (or
gradient in fraction of reacted propellant) across the bed. The partic-
ular input data as noted in Fig. 97 through 99 was the same as for the
orevious worst oxidirer-rich case so that a direct comparison could be
made with the original results to check the original dafinition.
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Fig. 100 through 102 show the pneumatic, thermal » and weight flowrates
for a typical experimental thrustor being pulsed for 150 milliseconds
near operating temperature. The inlet pressure frequencies are typical
for accumulator designs presently being considered.

Simultaneous inspection of the three plote reveals that:

1.

3.

The pressure in the mixing zone and, less strongly, chamber
pressure and thrust follow the cyclic H2 pressure. The effect
on chamber pressure and thrust results from the fact that the
molal (or volumetric) flowrate ratio of hydrogen to oxygen at
design conditions is 6.l. Thus, a 10~ to 20-percent variation

in 02 flowrate has an insignificant effect on total molal flow.

When the propellant pressures are 180 degrees out-of-phase

with Py being a maximum, the Po, injector will be at a mini-

mum of about 0.2 psia. Consequently, the O, flowrate cycles

2
through a wide amplitude as shown in Fig. 101. The instan-
taneous combustion temperature (TO) in Fig.102 also cycles

through wide extremes.

The maximum increase in catalyst bed node temperatures are
approximately LOOR or about one-third of the increase in
combustion temperature. The increase in temperature of each
node is dependent upon the assumed nominal temperature, e.g.,
fraction reaction and the mass represented by the node. It
appears that the gradient of propellant reacted through the
bed is beneficial in damping out temperature swings or spread-

ing out the increase in combustiom enthalpy release.

The frequency of the throat flowrate corresponds to the fre-
quency of the 02 weight flowrate because there is nominally

2.5 times more 02 flowing than H, by weight.
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When these results are compared to the original results, the swings
in catalyst bed temperature are shown to be significantly less than
previously expected. This improvement is attributed to a better
description of the system, so that the previously defined pressure
band limit can be considered as quite conservative.

Simulation of Thrustor Dynamic Operation

Thrustor operation was simulated with the computer subprogram to gain
insight into thrustor response characteristics (pneumatic, thermal,

INC .

and thrust response) and to evaluate transient mixture ratio variations

during start-up and shut-down operation.

Thrustor Response. Typical start-up pneumatic and thermal responses
for a 0.525" catalyst bed are presented in Figures 103, 104, and
105. Figure 103 shows the response of the chamber, mixer section,

and inlet pressures and thrust to valve actuation. The latter is

indicated by changes in valve orifice area.

The inlet temperatures to the catalyst bed, To’ and the temperatures
of the five segments c¢{ the bed are depicted in Fig. 104. Each bed

segment corresponds to a given length increment. For example, the first

curve represents a bed of about a 2 pellet thickness, the second of
4 pellets thickness, etc. For the case of full flow, the last seg-

ment also represents the cambustion chamber temperature. Instantaneous

flow rates and chamber mixture ratio as functions cf time are shown in
the bottam chart.
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To clearly understand how the thrustor performs one must interpret all

three chérts simultaneously rather than individually. Looking first at
the left-hand side of the charts, one sees that it takes approximately

75 milliseconds for the temperature of the last node to start to rise.

During this time period, the instantaneous chamber pressure, thrust,

Isp, and flow rates reach steady-state values indicative of cold flow.

Then as the temperature of the last node of the catalyst bed increases,
chamber pressure, thrust, and Isp exponentially approach their steady-
state values. Since the throat will allow a higher flow rate at low
temperature, or high density, than at operating temperature, the flow

rates decrease to their steady-state values.

Transient M.R. Variations. Figure 105 illustrates the fuel-rich
M.R. variation which occur on start up. Although not shown, the

reverse is true on shut-down. The cause of this undesirable M.R. vari-
ation is the difference in the rate of filling of the O2 and H2 pre-
injector volumes. For the filling and emptying times to be identical,
the ratio of injector volumes must be the same as the ratio of the
molal flow rate of propellants (VHZ/VO2 ={;}_:j:§??g\= 6.L). The
\M.R.| \MWHZ)
example shown is for the geometry (volume ratio of 1.26) of the initial
experimental thrustor. The hydrogen chamber fills and empties much
more rapidly on start-up and shut-down than the oxygen chamber, thus

causing the M.R. to be fuel rich on start-up and oxidizer rich on shut-
down.,

Two solutions to this problem were investigated. One involved valve
sequencing. Even with a 100 millisecond O, closure lead, it was con-
cluded that the M.R. would still go oxidizer rich on shut-down. It was

further concluded that valve sequencing would not be satisfactory for
pulse-mode operation.
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The only feasible solution to this problem is to readjust the pre-
injector volume ratio to that of the nolal flow rate ratio. This
correction in the design of future thrustors is necessary for safe
operation in a pulse-mode fashion.

Another undesirable feature of excess pre-injector volume is that

the residual propellants must pass through the thrustor after shut-
down, consequently putting a "tail" on the thrust curves. Thus, there
is a great deal of incentive to keep the pre-injector volumes small

as well as in the correct volume ratios.

CONDITIONER SIMULATION

The design of a system such as the conditioner subsystem requires
knowledge of the dynamics of each component and the interaction
between components. Also, the imposition of control on the system
results in additional interaction during operation. To develop
the necessary design parameters and to predict operational charac-~
teristics, a systems analysis and component modeling task was
accomplished. This resulted in a computer program which could
simulate the complete system or specific components.

The program consists of similtaneous equations linked by program
logic to describe the processes in the conditioner as a function
of time. Therefore, use of the simulation program could provide
information on the system transient and steady-state operating
characteristics and could relate these characteristics to specific
changes or perturbations in the system. In essence, a tool was
provided for demonstrating cause and effect relationships within
the system.
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More specifically, the program was used to accomplish the following:

1. Determine the basic operating characteristics of the system

2. Determine the appropriate type on control system:
a. Define the controlled variables
b. Determine parameters to be monitored
c. Determine where and how control is to be exercised
d. Determine control limits
e. Determine compensating requirements and methods

3. Determine the effects on system operation caused by ..
perturbations in tank pressure and thrustor duty
cycle

L. Define the minimum accumlator volume
5. Determine specific problem areas
6. Simulate planned tests

7. Indicate the instrumentation response requirements

Details of the Conditioner Model

The camputer model is a lumped, nonlinear representation system. At
present, the temperature and pressure of a given camponent are considered
as'a single node with the exception of the heat exchanger, which is
represented by two nodes. In a schematic of the computer model (Fig.106 )
the solid lines indicate fluid flow paths whereas the dotted lines
indicate control pats. Each component is described by a separate sub-
routine and is linked by program logic. Function generators are placed
at each of the system interfaces to simulate variations in interface
conditions with time. A detailed description of the mathematical model

is presented in the following paragraphs.
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Basic Fquations. The basic equations used in describing the system
components are described below. These equations are then suitably
combined as described later.

The low of liquid in a line is described by:
AP = B¥® + L(dW/dt) (59)

where R is the effective resistance and L. is the line inertance, The
effective resistance is the ratio of the nominal resistance to the

square of the nominal flowrate:
o2
R = [.Pn/in”~. (60)

The line inertance is the ratio of line length to the product of
equivalent line cross-sectional area and gravitational constant:

L= 1/gA. (61)

The flow of liquid through a valve or orifice is described by Eq. 59
with the second term on the right hand side deleted. The flowrate
is then described as:

. 3
28 ° (AP)J{- (62)

-

W=CDA :L

The flow of gas through a line or valve was described as in the thrustor
mbdeling:
1
. . - 2
W=CAY . 2g ¢ (AP)¢ (63)
(T

and inertial effects were neglected.
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The weight of propellant in a component at any time was calculated
from the integrated difference in flowrate in and out:
t

W= 5 (W, =W Jdb + W .o (64)
(o]

A thermal balance was used to calculate the temperature of gaseous
propellant in a component. The balance included heat transfer to the
component:

We 4T +c¢c W T
v dt

3 T. =gq=0 (65

p out “out —cp win in

The heat transfer to the component from the propellant was described
in terms of a driving force, effective heat transfer coefficient, and

exchange area:

qQ=UAAT | (66)
The effective heat transfer coefficient was dependent on the propellant
flowrate and temperature. In the heat exchanger, an effect of propel-

lant quality was also included:

U= f(v}, T, x) (67)

The rate of change in component temperature was determined as the ratio
of heat input to thermal capacity:

dT <=/cn: = q/Mc (68)

The vaporization rate for the liquid propellant at its boiling point was
described as the ratio of the heat input to the heat of vaporization:
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ﬂrv = q/x (69)

The P-V-T relationship for gaseous propellant was as defined for
the thrustor modeling:

P = W2T/V (72)

Towcver, for the case of combusticn gases in the gas generators, both

the gas constant and temperature were made functions of mixturc ratio:

«J

() (71-a)

-3
i

f(MR) (71-b)

The venting of gas to vacuum was described as a sonic flow:

{ K+ 1
. PAC. g K-1
e ——4d V (I{i_l) (72)
Y Xz =T

Use of Fgquations in Computer Model. The computer model was based on

the schematic shown in Fig. 106. Fach component was described using
the equations presented above based on this schematic. The specific

combinations of equations is discussed below.

The flow of propellant from the tankage to the heat exchanger incluces
flow through a line and a valve. For liquid propellant, the flowrate-
pressure relationship was described by Eq. 59. For gaseous propellants,
Eq. 63 was used to describe the flow into the heat exchanger. In this
case, the line was considered to have an appreciable volume and tle

net storage of mass in this volume was included in the descriptioen.

The properties of the gas stored in this line (pressure and temperature)
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were described using Eq. 64, 65, and 69 with the heat transfer term
in Eq. 65 set at zero. The flowrate of propellant into this volume
was described using Eq. 63.

The heat exchanger consists of two sides; hot and cold, modeled separ-
ately. For liquid flow to the cold side of the heat exchanger from
the tankage, the amount of liquid in the heat exchanger was described
as a function of the flowrate in the rate of propellant vaporization
as described by Eq. 59 and 68. The properties of the gas in the

cold side of the heat exchanger were described by Eq. 63 through 67
and Eq., 69.

The flow of conditioned gaseous propellant into the accumulators was
by Eq. 63. The properties of the gas stored in the accumulators were
described by Eq. 64, 65 and 69. The flow out the accumulator relief
valve was described using Eq. 72.

The flow of propellant to the gas generators from the accumulators

was considered as flow through an orifice (valve) and described by

Eq. 63. The gas properties in the mixer section of the gas generator
were described by Eq. 64, 65, and 69. The catalyst combustion tempera-
ture was described by Eq. 71. The catalyst bed temperature is described

by:

r ¢
-

1 i °
Teat - To + = ) (Tg = Tcat) L dt (73)

!

The temperature in the combustion chamber was described in Eq. 72,

and the other parameters were described by Eq. 64, 65, and 69.

The flow of hot gas into the hot side of the heat exchanger from the

gas generator was described by Eq. 63. The properties of this hot

gas within the heat exchanger were described by Eq. 64 through 67 and

69. The venting of gas from the heat exchanger was described by Eq. 72.
The temperature of the heat exchanger tube is described by Eq. 66 and 67.
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Conditioner Control System. The control system is comprised of a

number of control loops. The primary control variables are the accumu~
lator pressure and temperature. If the pressure is less than the nomi-
nal pressure minus a deadband, the main propellant valve will open
after an energizing delay time. If the pressure exceeds the nominal
pressure plus a deadband, the main propellant valve will close after

a de-energizing delay time. The temperature control loop, which is
active only when there is power to the main propellant valve, causes
the gas generator control valves to open if the temperature is below
the nominal value minus a deadband or to close if the temperature is
above the nominal value plus a deadband. In each case, the valves

actuate after an energizing or de-—energizing delay.

In addition, the gas generator catalyst bed temperature, gas generator
combustion chamber temperature, and heat exchanger tube wall tempera~
ture are controlled. If the combustion temperature in the catalyst

bed exceeds a specified temperature band during gas generator operation,
the oxidizer gas generator valve closes and remains closed until the
temperature drops below a specified temperature band. A similar loop

controls the gas generator combustion chamber temperature.

When there is no power to the main propellant valve, the heat exchanger
tube wall temperature control loop is active. If the tube temperature
drops below a specified temperature band, both gas generator control

valves open and remain open until the temperature band is exceeded.

Computer Input. A typical example of computer input data is presented

in Table 21 for the special case of saturated O2 vapor propellant
feed to the O, conditioner. Important input data from Table 21

are:
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1. Control points and deadbands:

a. The accumulator set point pressure is 17.0 t 0.5 psi.

This control circuit operates the main propellant valve.

b. The accumulator set point temperature is 200 £ 5,0 R.
This control circuit turns the gas generator on or off

when the main propellant feed valve is open.

c. The tube wall set point temperature is 4CO t 120 R.
This control circuit operates only when the main prepel-
lant valve is closed and is designed to keep the tube
hot during the coast model.

2., Main propellant valve delay is 0.020 second.
3. Accumulator volume is 250 cu in.

L. Thrustor duty cycle delay, frequency, and duration are 0.60

second, 1 cps, and 100 percent, respectively.

5. Thermal resistance within the heat exchanger and the tube

wall heat capacity as shown in Table 21.

Simulation of Conditioner Operation

Conditioner operation is shown for the case described in Table 21.
The system parameters were arbitrarily selected but are representative

of typical conditioning system design for the subject program.

The valve, temperature, pressure, and weight response for this case
are illustrated in Fig.107 through 110. The sequence of operation
is approximately:
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2.

Initial wall temperature is low, causing the gas generator to
turn on (Fig. 107), thus causing the wall temperature to

increase,

Low accumulator pressure signals main propellant valve to
open (Fig.107), causing: |

a. Buildup of the heat exchanger inlet pressure (Fig.109)
b. Flow to surge into the heat exchanger (Fig. 110)

c. Accumilator temperature to drop (Fig.108) because of the

low wall temperature

When the accumulator pressure reaches 17.5 psia, a signal
is sent to the main propellant valve to close. A 20-milli-

second delay causes the pressure to overshoot.
Excess pressure is vented by the relief valve

The process is essentially repreated when the thrustor valve

reopens at 0.6 second.

The gas generator does not turn off when the main propellant valve

closes.

Inspection of the tube wall control loop set point and dead-

band reveals that the gas generator will not close until a wall tempera-
ture of 520 R is reached.

Another control loop, not previously discussed, causes the oxidizer
flow to the gas generator to shut off (Fig. 107) when the catalyst
temperature reaches 2000 R, as shown in Fig.,108. This valve cycling

causes pressure and temperature perturbations as shown in Fig.l(8 and
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Under normal operation with saturated vapor feed, the gas generator
must cycle on and off because it has been sized to supply enough heat
to vaporize liquid. However, during the startup period, the tube wall
is absorbing enough heat to keep the gas generator on.

Computer runs similar to those presented in the preceding paragraphs

for saturated O, vapor were made for: (1) saturated 0, liquid, (2)
saturated H2 vapor, and (3) saturated Hz liquid for both pulse and steady
thrustor demand. The main differences and conclusions are:

1. A large amount of liquid 02 surges into the heat exchanger
when the main propellant valve is opened because the propellant
" valve must be sized for saturated O2 vapor flow which has a
density several hundred times less than that for saturated
liquid. The net effect of this pehnomenon is to cause the
main valve to cycle on and off, although there is a steady flow
demand by the thrustor.

2. There is not a great difference between H2 vapor and liquid
flow into the heat exchanger because of the small density
difference between H2 vapor and liquid. This factor can prob-
ably be used to advantage in the control circuit. For example,
the on-off pressure controller should possibly be put on the

H2 side and the variable orifice follower on the O2 side.,

3. In one case the \1r0:2 gas generator and ﬁnz gas generator rose
to only one-half of their nominal design values of 0.0020
1b/sec. The trouble was traced to the hot-gas dump pressure
which was approximately twice its normal value. It was con-
cluded that the hot-gas orifice had been sized wrong. In
this particular situation, flashback to the injector face might

have occurred.
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Evaluation of an Alternative Control
Concept-Follower Valve System

In addition to constructing a model of the conditioner subsystem with the
initial control system logic, a mathematical model of a pressure-actuated
follower valve was incorporated into the oxygen propellant conditioner
computer model. A schematic of the valve with the indicated installation
into the conditioner system is illustrated in Fig. 111. There are vir-
tually no damping forces within the valve except for the restrictive ori-
fices at the pressure ports, 8, and a,.

Included in the mathematical model is a description of the forces acting
on the poppet and their effect on its motion. In addition, the flow into
and from each pressure cavity,as well as the pressure in the cavity, are

W
described.

Several computer runs were made to determine an orifice size which would
permit good valve response and yet not oscillate excessively. An orifice
diameter of 0.06 inch resulted in reasonable operation. Additional com-
puter runs were made over a thrustor duty cycle having a frequency of

4 cps and a pulse duty cycle of 0.5. In one case, the hydrogen accumu-
lator pressure was varied sinusoidally at 3 cps with an amplitude of 1 psi.
For purposes of comparison with the second case, an additional run was

made by substituting an on-off valve for the follower valve. The frequency
of the hydrogen accumulator pressure oscillation and thrustor demand were
chosen at different values to demonstrate the difference in the phase of

accumulator pressures resulting in each system.
The volume of the oxygen accumulator used during this analysis was 250 cu in.,

and the response of the on-off valve (signal to open or close) was

30 milliseconds.
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The results of the first run, shown in Fig.1l2 and 113, indicate that

the oxygen accumulator pressure is maintained at almost a constant level
throughout the thrustor duty cycle. When the hydrogen accumulator pres-
sure oscillates, the oxygen accumulator pressure follows as shown in
Fig.114 and 115. The amplitude of the variation of oxygen accumulator
pressure is attenuated, but it oscillates at the same frequency and it
lags in phase by less than 45 degrees. With the on-off valve in the sys-
tem, as shown in Fig.]16 and 117, the oscillating frequency of the oxygen
accumulator is not the same as that of the hydrogen accumulator,and the

phase relationship is continually varying.

With the on-off valve in the oxygen system, both accumulators would tend ‘
to oscillate at the same frequency because the forcing function, thrustor
demand, is common to both systems. However, because of variations in
inlet conditions such as quality and pressure, as well as differences in
response from one system to the other, an out-of-phase condition could

result,

The follower valve appears to be limited in following decreases in hydro-
gen accumulator pressure. This is caused by the closing of the follower
valve when the hydrogen pressure falls below that of the oxygen. When
this occurs, the oxygen accumulator pressure will drop only as permitted
by gas generator and/or thrustor demand or by loss of heat. This might
be circumvented by reducing the oxygen accumulator volume to the extent
that its pressure will cycle at a much higher rate (will be more quickly
depleted) than the hydrogen accumulator.

Analysis of Accumulator Sizing

The chief purpose of the accumulator is to decouple the thrustor from
the conditioner system. To accomplish this, the accumulator must be
sized to attenuate: | '
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1. pressure perturbations caused by the main propellant valve

delays (both electrical and mechanical valve delays)

2. pressure and temperature perturbations produced by the heat
exchanger,
Of these, the former is the more easily analyzed.

Accumulator Pressure Decay Caused by Valve Delays. The pressure pertur-

bations caused by the electrical and mechanical valve delays can be
predicted through a material balance on the accumulator for the time
period between initiation of flow from the accumulator and the mechanical
opening of the inlet valve: |

input - output = accumulation (71)

or
dp
. vV acc
where
/2
v = W (2g pT APil.'l,]') -~ W PAcc (76)
T T nom| (2g py AP = T nom, [P
nom nom nom

Integration gives:
. TR _ 1/2 1/2
_[wT nom v |8 7 2y o[:Pf - P :] (77)

A plot of predicted accumulator pressure as a function of valve time
delay with accumulator volume as a parameter is presented in Fig.118 .
Worst-case accumulator limits presented above revealed that it was

desirable to hold the accumulator pressures to within approximately
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10.5 psi of each other. If this pressure drop is used with a main
propellant valve delay of 0.050 second, accumulator volumes of 2720
and 424 sq in are obtained for I-I2 and 02 sides, respectively.

Perturbations Caused by Heat Exchanger Flow Instability. Little was
known concerning heat exchanger flow instability (caused by boiling)
which could conceivably result in large pressure and temperature pertur-
bations in the inlet stream to an accumulator. The development of a
mathematical description of system behavior to such a process was de-
pendent on the system characteristics observed experimentally. Based

on the observed behavior, a model of the heat exchanger-accumular system
is developed in Volume II of this report.

a rough estimate of the thermal response to steady-state inlet tempera-
ture perturbations can be obtained by considering a heat balance around
the accumulator.

_ dr
o 5 _ ace 8
WO T WC, T, = MG, —gp— (78)
or
. T, =T
w _ in f acc 79
M 0 = 1n {-——— Tin - 200] ( )

The time for the accumulator temperature to reach 220 R for Tin of 1000
and 500 R was computed to be 41 and 94 milliseconds, respectively, for
the volumes sized in the previous paragraphs. This illustrates the

importance of selecting the correct hot—tube temperature set point.
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A cursory heat transfer analysis of the temperature-equalizing advan-
tage of placing the 02 accummulator inside the H2 accumulator was made
assuming concentric cylindrical containers 2 feet in length., Under
steady-state conditions, there was a negligible equalizing effect for

a 40 R temperature difference. A convective analysis for static no-~
flow conditions indicated that the response was somewhat better, although
still small. It was concluded that if a temperature-equalizing device
was necessary, a low-pressure-drop combination accumilator~-heat ex-

changer should be investigated,

SUMMARY OF SYSTEMS ANALYSIS

A systems analysis, modeling, and simulation effort was accomplished.
This resulted in computer programs which will be used in simulating
system or component operation. The details of the model development
are discussed.

The thrustor model was used to determine thrustor sensitivity to per-
turbations in upstream operating conditions and to predict thrustor
response and pulse-mode operating characteristics. Operating charac-
teristics of the conditioner subsystem and the interaction between
components were evaluated using the conditioner model. Also, the
adequacy of control system alternatives was evaluated.
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TABLE 20

INC.

COMPUTER MODEL INPUT AND OUTPUT

The following list indicates the information input to the model:

Computing time increment
Run duration
Printing and plotting increment

Thrustor duty cycle

Inlet pressure function, frequency, amplitude, and phase

Catalyst bed steady-state temperature gradient and initial

temperature
Initial mixer temperature

Component volumes

Valve opening and closing electrical energizing times and

mechanical actuation times

System steady-state pressure distribution

Propellant steady-state flowrates and inlet temperatures

Perturbed inlet pressures and temperatures

Heat capacity of catalyst bed and mixer

The computer output presents the following parameters as functions of

time:

Oxidizer line pressure

Hydrogen line pressure

Mixer pressure

Catalyst bed pressures (5)
Chamber pressure

Mixer temperature

Catalyst bed temperatures (5)
Catalyst bed reaction temperature

Combustion chamber temperature

257

Oxygen flowrate to the injector

Hydrogen flowrate to the injector

Oxygen bypass flowrate

Hydrogen bypass flowrate

Flowrate into the combustion
chamber

Flowrate through the nozzle

Propellant valve areas

Thrustor duty cycle
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Schematic of Thrustor for Modeling
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Figure 95.
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Computer Model Schematic of Thrustor
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H2 Valve
Orifice Area
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02 Valve Orifice Area

Pressure or Force, psia or 1lbf

|
A 5 6

‘Time, sec.
Fig. 100. Dynamic Analysis Evaluating Sensitivity of Thrustor Operation to

Upstream Conditions~-Pressure and Thrust Characteristics for
Oxidizer~Rich Operation

Imposed Operating Conditions

A. Oxygen Side B. Hydrogen Side
Accum. Press, = 16.25 + 1.25 sin.Wt. Accum. Press. = 16.25 + 1.25 Wt,
W = 10 cps W =15 cps
Temperature = 180 R Temperature = 220 R

265




m ROCKETDYNE . A DIVISION OF NORTH AMERICAN AVIATION, INC.

T T
5600
5200 |~
4800 -
LLOO |-
TCOB\bo
4000 Chamber
3600 -
3200 - To
j}’: 2800 |-
. T
:‘” 24,00 |- 'f | — \cu ) ,
(o) pasmsm— T
e CAT L
"'—"ﬁ 2000 T Tc
0 SR
' e
3 1600 k T
g DSI
- ON
8 1200
800 |
w0 :;__4/'--_—""""-____—"”
I
sp
0 1 |
.hO Tme, sec' 050 060

Fig. 101. Dymamic Analysis Evaluating Sensitivity of Thrustor Operation
to Upstream Conditions--Temperature and Specific Impulse Charac-
teristics for Oxidizer-Rich Operation

Imposed Operating Conditions

A. Oxygen Side B. Hydrogen Side
Accum.Press, = 16.25 + 1.25 sin.Wt. Accum.Press, = 16.25 + 1.25 Wt.
W = 10 cps W= 15 cps
Temperature = 180 R Temperature = 220 R

C. Nominal Temperature Conditions for l-inch Catalyst Bed Divided into Five
0.20-inch Segments
Toar, = 400% Toyr

= 80OR, Tgyp = 1200R, T
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oap. = 2000R, Topm = 2000R
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,08 | 2 inj

W
0
2 inj

0 |
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Fig. 102, Dynamic Analysis Evaluating Sensitivity of Thrustor Operation to

Upstream Conditions—~Flowrates and Mixture Ratio Characteristics
for Oxidizer-Rich Operation
Imposed Operating Conditions

A. Oxygen Side B, Hydrogen side
Accum.Press. = 16.25 + 1.25 sin.Wt. Accum.Press.= 16.25 + 1.25 Wt.
W =10 cps W= 15 cps
Temperature = 180 R Temperature = 220 R
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Pressure, Psia or Thrust, 1bf

Fig, 103.

Time, Seconds

Response Characteristics of a Full-Flow Thrustor
with a 0.525-inch Catalyst Bed - Valve Operation and
Pressure Response
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FUNCTION
GENERATOR

MAIN PROPELLANT VALVE

HEAT EXCHANGER

GAS GENERATOR CONTROL VALVES

—————_—1

| FUNCTION
T GENERATOR
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[m————— e e e
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Figure 106, Conditioner Model Schematic
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l"igure 107.

Conditioner System Dynamics for Saturated Vapor Propellant
Delivered from the Propellant Tank and for a Steady Thrustor
Demand - Valve Operation, Flowrate Dynamics, and Oxygen
Accumulator Pressure Dynamics
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Conditioner System Dynamics for Saturated Vapor
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for a Steady Thrustor Demand - Pressure Response for
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Figure 115.

Results for Simulated Conditioner Operation with an Oscillating

Hvdrogen Accumulator Pressure and Follower Valve Control -
System Pressures
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APPENDIX A
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